Normalized defining polynomial
\( x^{16} - 4 x^{15} + 154 x^{14} - 604 x^{13} + 10903 x^{12} - 40348 x^{11} + 456524 x^{10} - 1514672 x^{9} + 12191031 x^{8} - 34028752 x^{7} + 209524964 x^{6} - 454064500 x^{5} + 2240623355 x^{4} - 3374395156 x^{3} + 13770521718 x^{2} - 10856135284 x + 37766834191 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6040479020157644046336000000000000=2^{44}\cdot 3^{8}\cdot 5^{12}\cdot 11^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $129.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2640=2^{4}\cdot 3\cdot 5\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2640}(1,·)$, $\chi_{2640}(197,·)$, $\chi_{2640}(2177,·)$, $\chi_{2640}(2573,·)$, $\chi_{2640}(2509,·)$, $\chi_{2640}(593,·)$, $\chi_{2640}(661,·)$, $\chi_{2640}(1849,·)$, $\chi_{2640}(857,·)$, $\chi_{2640}(1189,·)$, $\chi_{2640}(1253,·)$, $\chi_{2640}(529,·)$, $\chi_{2640}(1321,·)$, $\chi_{2640}(1517,·)$, $\chi_{2640}(1913,·)$, $\chi_{2640}(1981,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{217961} a^{12} + \frac{18832}{217961} a^{11} + \frac{21841}{217961} a^{10} - \frac{28953}{217961} a^{9} - \frac{24901}{217961} a^{8} + \frac{80449}{217961} a^{7} + \frac{19668}{217961} a^{6} + \frac{679}{217961} a^{5} - \frac{49230}{217961} a^{4} + \frac{53535}{217961} a^{3} + \frac{27488}{217961} a^{2} + \frac{86358}{217961} a - \frac{68485}{217961}$, $\frac{1}{217961} a^{13} + \frac{164}{217961} a^{11} - \frac{46258}{217961} a^{10} + \frac{97534}{217961} a^{9} - \frac{1161}{7031} a^{8} + \frac{51011}{217961} a^{7} - \frac{71358}{217961} a^{6} + \frac{23541}{217961} a^{5} - \frac{53199}{217961} a^{4} - \frac{74007}{217961} a^{3} + \frac{89717}{217961} a^{2} + \frac{62641}{217961} a + \frac{34283}{217961}$, $\frac{1}{314123946952260689} a^{14} + \frac{711627432525}{314123946952260689} a^{13} - \frac{569000454549}{314123946952260689} a^{12} - \frac{14884745470573155}{314123946952260689} a^{11} - \frac{38351036263884739}{314123946952260689} a^{10} + \frac{3928120169837595}{314123946952260689} a^{9} - \frac{48490987309341}{3976252493066591} a^{8} - \frac{147587961613179762}{314123946952260689} a^{7} + \frac{4184863075426808}{10133030546847119} a^{6} - \frac{115374457660821844}{314123946952260689} a^{5} + \frac{67848146429559557}{314123946952260689} a^{4} - \frac{56538393907663649}{314123946952260689} a^{3} + \frac{119763064843318619}{314123946952260689} a^{2} + \frac{91932587139811645}{314123946952260689} a - \frac{87905300807089187}{314123946952260689}$, $\frac{1}{12902742499192569553081880352402944441} a^{15} + \frac{11532464958598138489}{12902742499192569553081880352402944441} a^{14} + \frac{24032953219147175087860185398454}{12902742499192569553081880352402944441} a^{13} + \frac{700366886843911715906164984483}{12902742499192569553081880352402944441} a^{12} - \frac{27828954479862099630635593352146318}{163325854420159108266859244967125879} a^{11} + \frac{337398027978600372753264385763252699}{12902742499192569553081880352402944441} a^{10} - \frac{35459075155932490151663187154316789}{12902742499192569553081880352402944441} a^{9} + \frac{244527883573267077431644389951511808}{12902742499192569553081880352402944441} a^{8} + \frac{5567775114136193888370085888916131404}{12902742499192569553081880352402944441} a^{7} + \frac{2761663384815068358459919756475248583}{12902742499192569553081880352402944441} a^{6} - \frac{718954546766660737795102859239474722}{12902742499192569553081880352402944441} a^{5} - \frac{2747289923289687498891611810095887071}{12902742499192569553081880352402944441} a^{4} + \frac{136867603850744756532452777106855417}{416217499973953856551028398464611111} a^{3} + \frac{5777605861543859721922733797852262169}{12902742499192569553081880352402944441} a^{2} + \frac{3894900169528212149585563296566403594}{12902742499192569553081880352402944441} a + \frac{2314992893361887338177615329727912736}{12902742499192569553081880352402944441}$
Class group and class number
$C_{16}\times C_{16}\times C_{48}\times C_{96}$, which has order $1179648$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12198.951274811623 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4^2$ |
| Character table for $C_4^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5 | Data not computed | ||||||
| $11$ | 11.8.4.1 | $x^{8} + 484 x^{4} - 1331 x^{2} + 58564$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 11.8.4.1 | $x^{8} + 484 x^{4} - 1331 x^{2} + 58564$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |