Normalized defining polynomial
\( x^{16} - x^{15} + 34 x^{14} - 17 x^{13} + 1081 x^{12} - 2863 x^{11} + 37414 x^{10} - 77707 x^{9} + 1160571 x^{8} - 1831298 x^{7} + 3157636 x^{6} - 4940264 x^{5} + 8292784 x^{4} + 1210688 x^{3} + 176896 x^{2} + 25600 x + 4096 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(60300391495425327222539306640625=5^{12}\cdot 89^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $96.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} + \frac{1}{5} a^{7} - \frac{2}{5} a^{6} + \frac{1}{5} a^{4} + \frac{2}{5} a^{2} + \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{10} a^{9} - \frac{1}{10} a^{8} - \frac{2}{5} a^{7} - \frac{1}{10} a^{6} + \frac{1}{10} a^{5} + \frac{3}{10} a^{4} + \frac{1}{5} a^{3} + \frac{3}{10} a^{2} - \frac{3}{10} a - \frac{1}{5}$, $\frac{1}{20} a^{10} - \frac{1}{20} a^{9} - \frac{1}{10} a^{8} - \frac{9}{20} a^{7} - \frac{3}{20} a^{6} - \frac{7}{20} a^{5} - \frac{3}{10} a^{4} - \frac{7}{20} a^{3} - \frac{9}{20} a^{2} + \frac{1}{10} a - \frac{2}{5}$, $\frac{1}{200} a^{11} - \frac{1}{200} a^{10} - \frac{3}{100} a^{9} - \frac{17}{200} a^{8} - \frac{79}{200} a^{7} + \frac{81}{200} a^{6} - \frac{9}{20} a^{5} - \frac{11}{200} a^{4} - \frac{37}{200} a^{3} - \frac{17}{100} a^{2} + \frac{3}{10} a + \frac{7}{25}$, $\frac{1}{400} a^{12} - \frac{1}{400} a^{11} - \frac{3}{200} a^{10} - \frac{17}{400} a^{9} + \frac{1}{400} a^{8} - \frac{39}{400} a^{7} + \frac{3}{8} a^{6} - \frac{11}{400} a^{5} - \frac{157}{400} a^{4} + \frac{83}{200} a^{3} + \frac{1}{20} a^{2} + \frac{1}{25} a + \frac{1}{5}$, $\frac{1}{8132269611217600} a^{13} + \frac{578061263003}{8132269611217600} a^{12} + \frac{5536462654223}{4066134805608800} a^{11} + \frac{8003096370703}{8132269611217600} a^{10} + \frac{386306501958157}{8132269611217600} a^{9} + \frac{238873572116213}{8132269611217600} a^{8} + \frac{380493058215849}{813226961121760} a^{7} + \frac{523205402330289}{1626453922243520} a^{6} + \frac{1683595010242519}{8132269611217600} a^{5} - \frac{1758164938074219}{4066134805608800} a^{4} + \frac{267793837445333}{2033067402804400} a^{3} - \frac{99045648155701}{1016533701402200} a^{2} - \frac{197996309643341}{508266850701100} a + \frac{27865766576864}{127066712675275}$, $\frac{1}{162645392224352000} a^{14} + \frac{7}{162645392224352000} a^{13} - \frac{77809554124043}{81322696112176000} a^{12} - \frac{385309392120497}{162645392224352000} a^{11} + \frac{3382148431151601}{162645392224352000} a^{10} - \frac{7801718442574263}{162645392224352000} a^{9} + \frac{1150656772054447}{81322696112176000} a^{8} - \frac{3948746906175787}{162645392224352000} a^{7} - \frac{1186152050597149}{162645392224352000} a^{6} + \frac{20112329640808691}{81322696112176000} a^{5} + \frac{18754074581621409}{40661348056088000} a^{4} + \frac{2851552657347639}{20330674028044000} a^{3} - \frac{39179099500261}{10165337014022000} a^{2} - \frac{79405251324743}{2541334253505500} a - \frac{78031312795949}{635333563376375}$, $\frac{1}{650581568897408000} a^{15} - \frac{1}{650581568897408000} a^{14} + \frac{9}{325290784448704000} a^{13} - \frac{795636376508929}{650581568897408000} a^{12} + \frac{1385618920217}{650581568897408000} a^{11} - \frac{10180790702755871}{650581568897408000} a^{10} - \frac{14777651349161781}{325290784448704000} a^{9} - \frac{36736688871941019}{650581568897408000} a^{8} - \frac{110893024564486373}{650581568897408000} a^{7} - \frac{70443850557152873}{325290784448704000} a^{6} - \frac{1601296403926479}{32529078444870400} a^{5} - \frac{13662799060153817}{81322696112176000} a^{4} + \frac{7077770961655543}{40661348056088000} a^{3} - \frac{2469386994541821}{10165337014022000} a^{2} - \frac{266266504488999}{1270667126752750} a - \frac{288281784691117}{635333563376375}$
Class group and class number
$C_{2}\times C_{6}\times C_{60}$, which has order $720$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{4637747729557}{130116313779481600} a^{15} - \frac{4637259558101}{130116313779481600} a^{14} + \frac{78841711402469}{65058156889740800} a^{13} - \frac{78841711402469}{130116313779481600} a^{12} + \frac{5013405295651117}{130116313779481600} a^{11} - \frac{13277871749721691}{130116313779481600} a^{10} + \frac{86757630684024879}{65058156889740800} a^{9} - \frac{360385462820685799}{130116313779481600} a^{8} + \frac{5382435520239697047}{130116313779481600} a^{7} - \frac{4246549070821137493}{65058156889740800} a^{6} + \frac{3661079797441861813}{32529078444870400} a^{5} - \frac{2865977725733987177}{16264539222435200} a^{4} + \frac{2403740010481663543}{8132269611217600} a^{3} + \frac{87732273800029769}{2033067402804400} a^{2} + \frac{3204683681123887}{508266850701100} a + \frac{4637747729557}{5082668507011} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14693160.0683 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $89$ | 89.8.6.1 | $x^{8} - 4361 x^{4} + 10265616$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 89.8.6.1 | $x^{8} - 4361 x^{4} + 10265616$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |