Normalized defining polynomial
\( x^{16} - 4 x^{15} - 59 x^{14} + 224 x^{13} + 1913 x^{12} - 5644 x^{11} - 40746 x^{10} + 93377 x^{9} + 564003 x^{8} - 1189269 x^{7} - 5269299 x^{6} + 11501862 x^{5} + 40514783 x^{4} - 92662748 x^{3} - 168241441 x^{2} + 248573337 x + 498229211 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(60300391495425327222539306640625=5^{12}\cdot 89^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $96.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{30} a^{8} - \frac{1}{15} a^{7} - \frac{2}{15} a^{6} + \frac{7}{15} a^{5} + \frac{3}{10} a^{4} + \frac{2}{5} a^{3} - \frac{1}{30} a^{2} - \frac{3}{10} a + \frac{11}{30}$, $\frac{1}{30} a^{9} - \frac{4}{15} a^{7} + \frac{1}{5} a^{6} + \frac{7}{30} a^{5} - \frac{7}{30} a^{3} - \frac{11}{30} a^{2} - \frac{7}{30} a - \frac{4}{15}$, $\frac{1}{30} a^{10} - \frac{1}{3} a^{7} + \frac{1}{6} a^{6} - \frac{4}{15} a^{5} + \frac{1}{6} a^{4} - \frac{1}{6} a^{3} - \frac{1}{2} a^{2} + \frac{1}{3} a - \frac{1}{15}$, $\frac{1}{30} a^{11} - \frac{1}{2} a^{7} + \frac{2}{5} a^{6} - \frac{1}{6} a^{5} - \frac{1}{6} a^{4} - \frac{1}{2} a^{3} - \frac{1}{15} a - \frac{1}{3}$, $\frac{1}{2503080} a^{12} - \frac{1}{834360} a^{11} - \frac{3233}{250308} a^{10} + \frac{205}{13906} a^{9} - \frac{574}{104295} a^{8} - \frac{410731}{2503080} a^{7} + \frac{341651}{834360} a^{6} - \frac{111527}{1251540} a^{5} + \frac{835571}{2503080} a^{4} - \frac{599987}{2503080} a^{3} - \frac{1230941}{2503080} a^{2} + \frac{15713}{55624} a - \frac{1195571}{2503080}$, $\frac{1}{2503080} a^{13} - \frac{32339}{2503080} a^{11} + \frac{1297}{139060} a^{10} + \frac{562}{104295} a^{9} - \frac{34879}{2503080} a^{8} - \frac{50353}{104295} a^{7} + \frac{1099649}{2503080} a^{6} - \frac{250771}{2503080} a^{5} + \frac{536183}{1251540} a^{4} - \frac{36095}{250308} a^{3} - \frac{205597}{417180} a^{2} + \frac{16067}{36810} a - \frac{111133}{278120}$, $\frac{1}{12515400} a^{14} - \frac{1}{12515400} a^{13} - \frac{15596}{1564425} a^{11} + \frac{11278}{1564425} a^{10} + \frac{42497}{12515400} a^{9} + \frac{124123}{12515400} a^{8} - \frac{34439}{208590} a^{7} + \frac{443591}{1390600} a^{6} + \frac{952541}{4171800} a^{5} + \frac{183013}{12515400} a^{4} - \frac{5649713}{12515400} a^{3} - \frac{373483}{834360} a^{2} + \frac{2850943}{6257700} a + \frac{302869}{1564425}$, $\frac{1}{24235634153501731369272660411299400} a^{15} - \frac{29826188708901619277773949}{969425366140069254770906416451976} a^{14} - \frac{604977311878420594150275313}{12117817076750865684636330205649700} a^{13} + \frac{508019899442768750001161507}{24235634153501731369272660411299400} a^{12} + \frac{126659200375974391098780304824527}{8078544717833910456424220137099800} a^{11} + \frac{88129300904041653142354431368657}{8078544717833910456424220137099800} a^{10} + \frac{18927214481884748485508009032279}{4847126830700346273854532082259880} a^{9} - \frac{162113134746628205589960651120311}{12117817076750865684636330205649700} a^{8} + \frac{1513242005090708022907997104695019}{4039272358916955228212110068549900} a^{7} + \frac{643280719403110914778847338079051}{2019636179458477614106055034274950} a^{6} - \frac{528579565881629142169515126869827}{1425625538441278315839568259488200} a^{5} + \frac{81995873038488413930194798942064}{201963617945847761410605503427495} a^{4} + \frac{902254850890837580296197371468641}{12117817076750865684636330205649700} a^{3} - \frac{8670966699090517526680878119811229}{24235634153501731369272660411299400} a^{2} - \frac{60541803298572657509126089982889}{158402837604586479537729806609800} a - \frac{4033416083825230907102742447161003}{24235634153501731369272660411299400}$
Class group and class number
$C_{2}\times C_{6}\times C_{12}$, which has order $144$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8274413.16122 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $89$ | 89.4.3.1 | $x^{4} - 89$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 89.4.3.1 | $x^{4} - 89$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 89.4.3.1 | $x^{4} - 89$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 89.4.3.1 | $x^{4} - 89$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |