Normalized defining polynomial
\( x^{16} - 5 x^{15} + 97 x^{14} - 450 x^{13} + 3620 x^{12} - 15095 x^{11} + 81672 x^{10} - 331650 x^{9} + 1434649 x^{8} - 5203580 x^{7} + 13030788 x^{6} - 13507995 x^{5} + 18270660 x^{4} - 19110520 x^{3} + 29677943 x^{2} - 30739535 x + 41700391 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(60300391495425327222539306640625=5^{12}\cdot 89^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $96.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{1068182} a^{14} - \frac{216359}{1068182} a^{13} + \frac{172851}{1068182} a^{12} + \frac{418945}{1068182} a^{11} + \frac{249205}{1068182} a^{10} + \frac{119113}{1068182} a^{9} + \frac{269665}{1068182} a^{8} + \frac{46719}{1068182} a^{7} + \frac{204615}{1068182} a^{6} - \frac{110919}{1068182} a^{5} + \frac{364467}{1068182} a^{4} - \frac{203297}{1068182} a^{3} - \frac{485403}{1068182} a^{2} - \frac{486563}{1068182} a - \frac{148245}{1068182}$, $\frac{1}{3248257640057523166185322608244882185476361403129353959582} a^{15} - \frac{1276263326434843379399982691531827957632062289535389}{3248257640057523166185322608244882185476361403129353959582} a^{14} + \frac{6338787172721014760183122514862276211386607234835698735}{29800528807867185010874519341696166839232673423205082198} a^{13} - \frac{91240276021589979006515238591733144165432864651217697641}{3248257640057523166185322608244882185476361403129353959582} a^{12} - \frac{1049001507820186032139246949440832759561513733719387350071}{3248257640057523166185322608244882185476361403129353959582} a^{11} - \frac{1557966969002904161331447293953639275721145782509212408295}{3248257640057523166185322608244882185476361403129353959582} a^{10} + \frac{528325403450261185795058272550772408189173861475559582365}{3248257640057523166185322608244882185476361403129353959582} a^{9} - \frac{680562968396712597391173155741171537961508940302207020099}{3248257640057523166185322608244882185476361403129353959582} a^{8} + \frac{677759802704635401188780592704182267184622447507980996631}{3248257640057523166185322608244882185476361403129353959582} a^{7} - \frac{354050593617414393837010444513775314183103067650346206663}{3248257640057523166185322608244882185476361403129353959582} a^{6} - \frac{372884908554603837535320618167620829382559337755472858291}{3248257640057523166185322608244882185476361403129353959582} a^{5} + \frac{549993351173302746108780188477240481396838174400835436111}{3248257640057523166185322608244882185476361403129353959582} a^{4} - \frac{95926859109092977941627860079641750025969649937157310817}{3248257640057523166185322608244882185476361403129353959582} a^{3} + \frac{2313350515627822440219674716272500570091006132545600861}{29800528807867185010874519341696166839232673423205082198} a^{2} + \frac{701367715236169385596488929150047033161638484187459939951}{3248257640057523166185322608244882185476361403129353959582} a + \frac{347732949108566742365157777948094900871568290846316929291}{1624128820028761583092661304122441092738180701564676979791}$
Class group and class number
$C_{2}\times C_{24}\times C_{240}$, which has order $11520$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 95443.616698 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $89$ | 89.8.6.1 | $x^{8} - 4361 x^{4} + 10265616$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 89.8.6.1 | $x^{8} - 4361 x^{4} + 10265616$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |