Normalized defining polynomial
\( x^{16} - 5 x^{15} + 37 x^{14} - 30 x^{13} + 518 x^{12} + 4690 x^{11} - 3876 x^{10} + 111440 x^{9} + 195560 x^{8} + 389090 x^{7} + 4876594 x^{6} + 5719110 x^{5} + 26373403 x^{4} + 92075725 x^{3} + 174226747 x^{2} + 228573380 x + 913931536 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(60283401692879138764114019775390625=5^{14}\cdot 61^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $149.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{4} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{4}$, $\frac{1}{16} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{16} a^{8} + \frac{3}{16} a^{5} + \frac{1}{8} a^{4} - \frac{3}{8} a^{3} - \frac{3}{16} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{12} - \frac{1}{8} a^{10} - \frac{1}{16} a^{9} - \frac{1}{8} a^{8} + \frac{3}{16} a^{6} + \frac{1}{8} a^{4} - \frac{3}{16} a^{3} - \frac{3}{8} a^{2} - \frac{1}{2} a$, $\frac{1}{448} a^{13} + \frac{3}{448} a^{12} - \frac{13}{448} a^{11} - \frac{13}{448} a^{10} + \frac{53}{448} a^{9} + \frac{7}{64} a^{8} + \frac{1}{64} a^{7} + \frac{7}{64} a^{6} - \frac{111}{448} a^{5} - \frac{95}{448} a^{4} - \frac{153}{448} a^{3} + \frac{155}{448} a^{2} + \frac{1}{112} a - \frac{1}{4}$, $\frac{1}{20608} a^{14} + \frac{3}{5152} a^{13} - \frac{15}{1472} a^{12} + \frac{117}{10304} a^{11} - \frac{71}{2576} a^{10} - \frac{717}{10304} a^{9} + \frac{75}{736} a^{8} - \frac{1}{92} a^{7} - \frac{1739}{10304} a^{6} - \frac{2017}{10304} a^{5} - \frac{57}{368} a^{4} + \frac{2497}{10304} a^{3} - \frac{5293}{20608} a^{2} - \frac{1447}{5152} a - \frac{13}{184}$, $\frac{1}{9796698496992647504202162047355478813427560300672} a^{15} - \frac{14045265501371358923053872833006846459929703}{612293656062040469012635127959717425839222518792} a^{14} + \frac{1267754209285620395615237660783771558625592469}{4898349248496323752101081023677739406713780150336} a^{13} - \frac{44850290874120020653254038393423085829986767725}{4898349248496323752101081023677739406713780150336} a^{12} + \frac{8877916793508938141151898960694704642892924575}{349882089178308839435791501691267100479555725024} a^{11} + \frac{7125796756017489462755446486370493445556482339}{699764178356617678871583003382534200959111450048} a^{10} + \frac{53097664192178423591273767473541961071272989913}{1224587312124080938025270255919434851678445037584} a^{9} + \frac{496580739480453265276671481621320533348782911}{18414846798858359970304815878487742130502932896} a^{8} - \frac{334652851212900984512681162723165821738707454529}{4898349248496323752101081023677739406713780150336} a^{7} - \frac{140271283054718616086748034712569785676078946103}{4898349248496323752101081023677739406713780150336} a^{6} + \frac{217223976324079107030122784923776345876056319855}{2449174624248161876050540511838869703356890075168} a^{5} - \frac{711688414093646122456090736864295431150097109321}{4898349248496323752101081023677739406713780150336} a^{4} + \frac{349996098370706807464542005874328764282107239129}{1399528356713235357743166006765068401918222900096} a^{3} - \frac{99797033911427425427636951880370575557771015801}{349882089178308839435791501691267100479555725024} a^{2} - \frac{220479764243877891802496187398620967242766775043}{612293656062040469012635127959717425839222518792} a - \frac{2534443630963225852391542545763422976939753138}{10933815286822151232368484427852096889986116407}$
Class group and class number
$C_{2}\times C_{110}\times C_{220}$, which has order $48400$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15204478.8595 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T36):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.7.1 | $x^{8} - 5$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.1 | $x^{8} - 5$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $61$ | 61.8.7.2 | $x^{8} - 244$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 61.8.7.2 | $x^{8} - 244$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |