Normalized defining polynomial
\( x^{16} - 8 x^{15} + 24 x^{14} - 25 x^{13} - 9 x^{12} - 74 x^{11} + 490 x^{10} - 924 x^{9} + 910 x^{8} - 814 x^{7} + 1005 x^{6} - 908 x^{5} + 734 x^{4} - 272 x^{3} + 36 x^{2} - 4 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(60250206922566378206033=17^{7}\cdot 59^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{1019} a^{14} - \frac{2}{1019} a^{13} + \frac{325}{1019} a^{12} + \frac{280}{1019} a^{11} + \frac{477}{1019} a^{10} - \frac{263}{1019} a^{9} + \frac{458}{1019} a^{8} + \frac{6}{1019} a^{7} - \frac{398}{1019} a^{6} - \frac{305}{1019} a^{5} - \frac{62}{1019} a^{4} + \frac{60}{1019} a^{3} + \frac{30}{1019} a^{2} + \frac{346}{1019} a + \frac{293}{1019}$, $\frac{1}{3492590552773607} a^{15} + \frac{1315319739394}{3492590552773607} a^{14} - \frac{206329665987913}{3492590552773607} a^{13} + \frac{1140526717703332}{3492590552773607} a^{12} - \frac{1397966047920851}{3492590552773607} a^{11} + \frac{1558422656241668}{3492590552773607} a^{10} + \frac{840323457676811}{3492590552773607} a^{9} + \frac{256135950772982}{3492590552773607} a^{8} - \frac{1304236619817653}{3492590552773607} a^{7} + \frac{1202654534319808}{3492590552773607} a^{6} + \frac{1085687046667601}{3492590552773607} a^{5} - \frac{460162184816735}{3492590552773607} a^{4} + \frac{568087736122834}{3492590552773607} a^{3} + \frac{1262931032717910}{3492590552773607} a^{2} + \frac{535602153384338}{3492590552773607} a + \frac{1013830850973587}{3492590552773607}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9007.32885109 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T289):
| A solvable group of order 128 |
| The 44 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-59}) \), 4.0.59177.1, 8.0.59532594593.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | $16$ | $16$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.0.1 | $x^{8} + x^{2} - 3 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 17.8.7.6 | $x^{8} + 37179$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| 59 | Data not computed | ||||||