Normalized defining polynomial
\( x^{16} - 5 x^{15} + 11 x^{14} - 58 x^{13} + 502 x^{12} - 1991 x^{11} + 5182 x^{10} - 15840 x^{9} + 54992 x^{8} - 209167 x^{7} + 440048 x^{6} - 536748 x^{5} + 1309311 x^{4} - 3179774 x^{3} + 12891428 x^{2} - 25175452 x + 15350411 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(60196204493330351894775390625=5^{12}\cdot 29^{8}\cdot 149^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $62.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29, 149$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} - \frac{2}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{9} - \frac{2}{5} a^{7} + \frac{1}{5} a^{6} - \frac{1}{5} a^{5} - \frac{1}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{5} a^{10} + \frac{1}{5} a^{7} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} + \frac{2}{5} a^{3} - \frac{2}{5} a^{2} - \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{11} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} - \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{12} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a^{4} + \frac{2}{5} a^{3} - \frac{2}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{5} a^{13} - \frac{2}{5} a^{7} - \frac{1}{5} a^{6} + \frac{1}{5} a^{5} + \frac{1}{5} a^{3} + \frac{1}{5} a^{2} - \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{14} - \frac{1}{5} a^{7} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a^{4} - \frac{1}{5} a^{3} + \frac{2}{5}$, $\frac{1}{2394394523986715720831406865660379945316476745605} a^{15} + \frac{254645763421339048280812696944049125646005221}{15447706606365907876331657197808902873009527391} a^{14} + \frac{95388470018578157007564075557176814013797131962}{2394394523986715720831406865660379945316476745605} a^{13} + \frac{22479130707801241146593889024052706697088907439}{478878904797343144166281373132075989063295349121} a^{12} + \frac{145849460590693989934608767667605876250850594174}{2394394523986715720831406865660379945316476745605} a^{11} + \frac{189017840671385483521570912913625721517575221286}{2394394523986715720831406865660379945316476745605} a^{10} + \frac{12055131029119294670973613960575508324390853932}{2394394523986715720831406865660379945316476745605} a^{9} + \frac{90691807497430403768558211728829976218214335566}{2394394523986715720831406865660379945316476745605} a^{8} + \frac{236514875027988968232435730230817509669991037096}{478878904797343144166281373132075989063295349121} a^{7} - \frac{231968014845035647844244097347815003927055351673}{478878904797343144166281373132075989063295349121} a^{6} + \frac{835541198503240274819375908304647777159059841134}{2394394523986715720831406865660379945316476745605} a^{5} + \frac{1114488835823444894518273343458072160641997942116}{2394394523986715720831406865660379945316476745605} a^{4} + \frac{132258224565614424410197038804409775215706550604}{478878904797343144166281373132075989063295349121} a^{3} - \frac{673084698961806398262821515377305836811093792722}{2394394523986715720831406865660379945316476745605} a^{2} + \frac{865637984437356334105408358728333111631966495168}{2394394523986715720831406865660379945316476745605} a + \frac{12296666106544893379635754259583191966894114576}{30308791442869819251030466653928860067297173995}$
Class group and class number
$C_{2}\times C_{2}\times C_{6}$, which has order $24$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1727584.25404 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4^2:C_2^2.C_2$ (as 16T382):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $C_4^2:C_2^2.C_2$ |
| Character table for $C_4^2:C_2^2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.108025.2, 4.4.725.1, 4.0.3725.1, 8.0.11669400625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $29$ | 29.4.2.2 | $x^{4} - 29 x^{2} + 2523$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 29.4.3.4 | $x^{4} + 232$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.3.3 | $x^{4} + 58$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $149$ | 149.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 149.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 149.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 149.2.1.1 | $x^{2} - 149$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 149.2.1.1 | $x^{2} - 149$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 149.2.1.1 | $x^{2} - 149$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 149.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 149.2.1.1 | $x^{2} - 149$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |