Normalized defining polynomial
\( x^{16} - x^{15} - 4 x^{14} - 41 x^{13} + 6 x^{12} + 184 x^{11} + 163 x^{10} + 452 x^{9} + 1014 x^{8} + 599 x^{7} + 632 x^{6} + 1090 x^{5} - 89 x^{4} - 384 x^{3} + 126 x^{2} - 108 x + 81 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(59710443940858531640625=3^{8}\cdot 5^{8}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(195=3\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{195}(64,·)$, $\chi_{195}(1,·)$, $\chi_{195}(194,·)$, $\chi_{195}(131,·)$, $\chi_{195}(14,·)$, $\chi_{195}(79,·)$, $\chi_{195}(86,·)$, $\chi_{195}(151,·)$, $\chi_{195}(31,·)$, $\chi_{195}(161,·)$, $\chi_{195}(34,·)$, $\chi_{195}(164,·)$, $\chi_{195}(44,·)$, $\chi_{195}(109,·)$, $\chi_{195}(116,·)$, $\chi_{195}(181,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{5} + \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{6} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{7} + \frac{1}{3} a^{3}$, $\frac{1}{1098} a^{12} - \frac{13}{549} a^{11} + \frac{19}{549} a^{10} + \frac{7}{366} a^{9} - \frac{86}{549} a^{8} + \frac{253}{549} a^{7} + \frac{127}{1098} a^{6} + \frac{8}{183} a^{5} + \frac{230}{549} a^{4} - \frac{293}{1098} a^{3} + \frac{16}{549} a^{2} - \frac{19}{61} a + \frac{3}{122}$, $\frac{1}{25254} a^{13} + \frac{1}{25254} a^{12} + \frac{583}{12627} a^{11} - \frac{505}{8418} a^{10} - \frac{2167}{25254} a^{9} + \frac{2872}{12627} a^{8} - \frac{4511}{25254} a^{7} - \frac{1}{2} a^{6} - \frac{1135}{12627} a^{5} - \frac{5441}{25254} a^{4} + \frac{11519}{25254} a^{3} - \frac{157}{4209} a^{2} - \frac{1361}{8418} a + \frac{1301}{2806}$, $\frac{1}{25254} a^{14} - \frac{4}{12627} a^{12} + \frac{2563}{25254} a^{11} - \frac{1568}{12627} a^{10} + \frac{19}{4209} a^{9} - \frac{10531}{25254} a^{8} + \frac{2221}{12627} a^{7} - \frac{1963}{12627} a^{6} - \frac{1}{46} a^{5} + \frac{3857}{12627} a^{4} + \frac{1463}{12627} a^{3} + \frac{157}{2806} a^{2} + \frac{746}{4209} a + \frac{396}{1403}$, $\frac{1}{1415086651386} a^{15} + \frac{4034207}{1415086651386} a^{14} - \frac{11157703}{1415086651386} a^{13} - \frac{155406862}{707543325693} a^{12} + \frac{27897899549}{471695550462} a^{11} - \frac{5291548411}{61525506582} a^{10} - \frac{15329887450}{707543325693} a^{9} + \frac{302755149719}{1415086651386} a^{8} + \frac{1111462519}{27746797086} a^{7} + \frac{129327599809}{707543325693} a^{6} - \frac{638638140385}{1415086651386} a^{5} - \frac{136294113317}{1415086651386} a^{4} + \frac{26200061204}{707543325693} a^{3} + \frac{20043153485}{52410616718} a^{2} - \frac{67587586199}{157231850154} a - \frac{7478951279}{52410616718}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{2813694739}{1415086651386} a^{15} + \frac{779000785}{707543325693} a^{14} - \frac{10063753958}{707543325693} a^{13} - \frac{60388869250}{707543325693} a^{12} - \frac{8816084557}{78615925077} a^{11} + \frac{356818299035}{707543325693} a^{10} + \frac{7644541961}{11599070913} a^{9} + \frac{735238981588}{707543325693} a^{8} + \frac{50053067578}{13873398543} a^{7} + \frac{2290213078519}{707543325693} a^{6} + \frac{1546986988594}{707543325693} a^{5} + \frac{3952159141403}{707543325693} a^{4} + \frac{1458168790721}{707543325693} a^{3} - \frac{287791191752}{235847775231} a^{2} + \frac{123128704825}{78615925077} a - \frac{3953229047}{52410616718} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 57289.5984617 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $13$ | 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |