Normalized defining polynomial
\( x^{16} - x^{15} + 23 x^{13} + 35 x^{12} - 130 x^{11} - 105 x^{10} + 7317 x^{9} + 45676 x^{8} + 141137 x^{7} + 287185 x^{6} + 441734 x^{5} + 548736 x^{4} + 544952 x^{3} + 402960 x^{2} + 196032 x + 47872 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(594882994674022504125031032809=11^{8}\cdot 89^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $72.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{4} a^{5} - \frac{1}{8} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{10} - \frac{1}{4} a^{6} - \frac{1}{8} a^{4} + \frac{1}{4} a^{3}$, $\frac{1}{8} a^{11} - \frac{1}{4} a^{6} + \frac{1}{8} a^{5} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{48} a^{12} - \frac{1}{16} a^{11} - \frac{1}{16} a^{10} - \frac{1}{24} a^{9} - \frac{1}{24} a^{8} - \frac{1}{8} a^{7} - \frac{7}{48} a^{6} + \frac{5}{48} a^{5} + \frac{1}{48} a^{4} - \frac{1}{6} a^{3} - \frac{1}{3} a^{2} + \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{96} a^{13} - \frac{1}{16} a^{11} + \frac{1}{96} a^{10} + \frac{1}{24} a^{9} - \frac{1}{8} a^{8} + \frac{11}{96} a^{7} + \frac{1}{12} a^{6} + \frac{5}{48} a^{5} - \frac{5}{96} a^{4} + \frac{5}{24} a^{3} + \frac{1}{12} a^{2} - \frac{5}{12} a$, $\frac{1}{1152} a^{14} - \frac{1}{192} a^{13} - \frac{1}{288} a^{12} + \frac{7}{1152} a^{11} + \frac{5}{144} a^{10} + \frac{1}{144} a^{9} - \frac{17}{1152} a^{8} + \frac{13}{576} a^{7} + \frac{59}{288} a^{6} - \frac{79}{1152} a^{5} + \frac{25}{288} a^{4} - \frac{11}{72} a^{3} - \frac{7}{48} a^{2} + \frac{17}{36} a - \frac{4}{9}$, $\frac{1}{518997040169346161784576} a^{15} + \frac{49177989480629233207}{518997040169346161784576} a^{14} + \frac{732312949937085207595}{259498520084673080892288} a^{13} + \frac{151766739216917082473}{19222112598864672658688} a^{12} + \frac{11407494277179393739811}{518997040169346161784576} a^{11} + \frac{709215664419661089413}{21624876673722756741024} a^{10} + \frac{2411079205406299775071}{57666337796594017976064} a^{9} - \frac{2273906734049401478249}{19222112598864672658688} a^{8} + \frac{8452667209773804859067}{259498520084673080892288} a^{7} + \frac{38434880741852799858925}{518997040169346161784576} a^{6} - \frac{33133679725287554853493}{172999013389782053928192} a^{5} - \frac{13129228855779880748857}{129749260042336540446144} a^{4} - \frac{2188556907412500362371}{64874630021168270223072} a^{3} + \frac{30845314410387823316699}{64874630021168270223072} a^{2} - \frac{3053754039637869673607}{16218657505292067555768} a - \frac{1256658099541040407669}{4054664376323016888942}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2341079059.75 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4:D_4.D_4$ (as 16T681):
| A solvable group of order 256 |
| The 19 conjugacy class representatives for $C_4:D_4.D_4$ |
| Character table for $C_4:D_4.D_4$ |
Intermediate fields
| \(\Q(\sqrt{89}) \), 4.2.87131.1, 8.0.675671193329.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | R | $16$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.8.6.1 | $x^{8} + 143 x^{4} + 5929$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $89$ | 89.2.1.1 | $x^{2} - 89$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 89.2.1.1 | $x^{2} - 89$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.4.3.1 | $x^{4} - 89$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 89.4.3.1 | $x^{4} - 89$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 89.4.3.1 | $x^{4} - 89$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |