Normalized defining polynomial
\( x^{16} - 2 x^{15} + 16 x^{14} + x^{13} + 188 x^{12} - 256 x^{11} + 2629 x^{10} - 1780 x^{9} + 16260 x^{8} - 5457 x^{7} + 132380 x^{6} - 5820 x^{5} + 368815 x^{4} - 706086 x^{3} + 352784 x^{2} - 341152 x + 5333168 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(58966431579683595226807139761=13^{14}\cdot 157^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $62.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 157$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{4} a^{14} + \frac{1}{4} a^{11} - \frac{1}{2} a^{10} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{55501360485555181826739813680737778214354577352} a^{15} + \frac{1878907415910194383861556524984552904786723431}{27750680242777590913369906840368889107177288676} a^{14} - \frac{176196678258345011219104477388413947375670547}{816196477728752673922644318834379091387567314} a^{13} + \frac{4034755868569049466205581522915139770589158993}{55501360485555181826739813680737778214354577352} a^{12} - \frac{3680730863189168647328638455948683627365013323}{13875340121388795456684953420184444553588644338} a^{11} + \frac{3781972040118964286636326263437401802687438959}{13875340121388795456684953420184444553588644338} a^{10} + \frac{10548409240254380322760782211379197724123173645}{55501360485555181826739813680737778214354577352} a^{9} + \frac{76015870483945897399377257567771917317723943}{816196477728752673922644318834379091387567314} a^{8} - \frac{3062551476613740279224073885137436736045999857}{6937670060694397728342476710092222276794322169} a^{7} + \frac{289704030935609966439801627816822046460381445}{1290729313617562368063716597226459958473362264} a^{6} - \frac{2056071846997051867386947525033241024936695593}{13875340121388795456684953420184444553588644338} a^{5} - \frac{411467641655629657842423179092713056016082363}{6937670060694397728342476710092222276794322169} a^{4} + \frac{1155318440373172567375602106835630360823031823}{55501360485555181826739813680737778214354577352} a^{3} + \frac{10911699878569613185957582454266250063806206413}{27750680242777590913369906840368889107177288676} a^{2} - \frac{1219697487646971144145676010488268958067205209}{13875340121388795456684953420184444553588644338} a + \frac{950103823530377406269781037078611432893401036}{6937670060694397728342476710092222276794322169}$
Class group and class number
$C_{26}$, which has order $26$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1814278.67304 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_4).D_4$ (as 16T121):
| A solvable group of order 64 |
| The 28 conjugacy class representatives for $(C_2\times C_4).D_4$ |
| Character table for $(C_2\times C_4).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.0.2197.1, 4.4.344929.1, 4.0.26533.1, 8.8.242830046698681.1, 8.0.242830046698681.1, 8.0.118976015041.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.8.7.2 | $x^{8} - 52$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 13.8.7.2 | $x^{8} - 52$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $157$ | 157.4.0.1 | $x^{4} - x + 15$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 157.4.3.4 | $x^{4} + 19625$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 157.4.3.4 | $x^{4} + 19625$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 157.4.0.1 | $x^{4} - x + 15$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |