Normalized defining polynomial
\( x^{16} - 8 x^{14} + 38 x^{12} - 108 x^{10} + 207 x^{8} - 244 x^{6} + 166 x^{4} + 88 x^{2} + 9 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(58929626493994663936=2^{24}\cdot 37^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{20} a^{12} - \frac{1}{4} a^{10} + \frac{1}{5} a^{8} - \frac{1}{20} a^{6} - \frac{1}{2} a^{5} + \frac{2}{5} a^{4} - \frac{1}{2} a^{3} - \frac{1}{20} a^{2} - \frac{1}{2} a - \frac{9}{20}$, $\frac{1}{20} a^{13} - \frac{1}{4} a^{11} + \frac{1}{5} a^{9} - \frac{1}{20} a^{7} - \frac{1}{2} a^{6} + \frac{2}{5} a^{5} - \frac{1}{2} a^{4} - \frac{1}{20} a^{3} - \frac{1}{2} a^{2} - \frac{9}{20} a$, $\frac{1}{68980} a^{14} - \frac{657}{68980} a^{12} + \frac{551}{17245} a^{10} + \frac{831}{68980} a^{8} - \frac{1}{2} a^{7} - \frac{1433}{3449} a^{6} - \frac{1}{2} a^{5} - \frac{14157}{68980} a^{4} - \frac{1}{2} a^{3} - \frac{77}{68980} a^{2} - \frac{2143}{17245}$, $\frac{1}{206940} a^{15} - \frac{2053}{103470} a^{13} - \frac{49531}{206940} a^{11} + \frac{1435}{13796} a^{9} - \frac{31397}{68980} a^{7} + \frac{61721}{206940} a^{5} - \frac{1}{2} a^{4} + \frac{18088}{51735} a^{3} - \frac{1}{2} a^{2} + \frac{56959}{206940} a - \frac{1}{2}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{611}{20694} a^{15} - \frac{2396}{10347} a^{13} + \frac{11114}{10347} a^{11} - \frac{10224}{3449} a^{9} + \frac{18855}{3449} a^{7} - \frac{63724}{10347} a^{5} + \frac{77117}{20694} a^{3} + \frac{33535}{10347} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3490.02865985 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_4$ (as 16T61):
| A solvable group of order 48 |
| The 10 conjugacy class representatives for $C_2\times S_4$ |
| Character table for $C_2\times S_4$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-37}) \), \(\Q(\sqrt{37}) \), 4.0.592.1, \(\Q(i, \sqrt{37})\), 8.0.479785216.2, 8.0.5607424.1, 8.0.7676563456.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 siblings: | 6.4.350464.1, 6.4.12967168.3 |
| Degree 8 siblings: | 8.0.5607424.1, 8.0.7676563456.4 |
| Degree 12 siblings: | 12.0.491300061184.1, 12.8.168147445940224.1, 12.0.672589783760896.1, 12.4.18178102263808.1, 12.0.672589783760896.3, 12.0.672589783760896.2 |
| Degree 24 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $37$ | 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |