Normalized defining polynomial
\( x^{16} + 7 x^{14} - 7 x^{13} + 25 x^{12} - 33 x^{11} + 97 x^{10} - 87 x^{9} + 205 x^{8} - 233 x^{7} + 283 x^{6} - 241 x^{5} + 185 x^{4} - 109 x^{3} + 43 x^{2} - 10 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5871040516387428777=3^{12}\cdot 73^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $14.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{86} a^{14} - \frac{39}{86} a^{13} + \frac{17}{86} a^{12} + \frac{37}{86} a^{11} - \frac{15}{86} a^{10} + \frac{29}{86} a^{9} - \frac{41}{86} a^{8} + \frac{5}{86} a^{7} + \frac{41}{86} a^{6} - \frac{13}{86} a^{5} - \frac{15}{86} a^{4} + \frac{35}{86} a^{3} - \frac{15}{86} a^{2} - \frac{35}{86} a - \frac{7}{86}$, $\frac{1}{11037727706} a^{15} - \frac{18728671}{5518863853} a^{14} - \frac{100932973}{5518863853} a^{13} + \frac{2137226585}{5518863853} a^{12} - \frac{1277686110}{5518863853} a^{11} - \frac{221979809}{5518863853} a^{10} - \frac{1782587768}{5518863853} a^{9} + \frac{184425000}{5518863853} a^{8} + \frac{1771208756}{5518863853} a^{7} - \frac{527932783}{5518863853} a^{6} - \frac{2167426340}{5518863853} a^{5} + \frac{1920050789}{5518863853} a^{4} + \frac{2472726894}{5518863853} a^{3} - \frac{375211717}{5518863853} a^{2} + \frac{1161513770}{5518863853} a + \frac{3214527801}{11037727706}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{624081332}{128345671} a^{15} + \frac{208910181}{128345671} a^{14} + \frac{4430959902}{128345671} a^{13} - \frac{2893222129}{128345671} a^{12} + \frac{14576152993}{128345671} a^{11} - \frac{15717677993}{128345671} a^{10} + \frac{55110705098}{128345671} a^{9} - \frac{35760391060}{128345671} a^{8} + \frac{115389046944}{128345671} a^{7} - \frac{106741857420}{128345671} a^{6} + \frac{139599640800}{128345671} a^{5} - \frac{103144298623}{128345671} a^{4} + \frac{79814866837}{128345671} a^{3} - \frac{40661349514}{128345671} a^{2} + \frac{12646711503}{128345671} a - \frac{1711425666}{128345671} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1279.51275205 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T289):
| A solvable group of order 128 |
| The 44 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 4.0.657.1, 8.0.31510377.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | $16$ | $16$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $73$ | 73.8.7.6 | $x^{8} + 9125$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 73.8.0.1 | $x^{8} - x + 40$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |