Properties

Label 16.0.58609993297...0000.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{4}\cdot 5^{8}\cdot 6229^{5}$
Root discriminant $40.78$
Ramified primes $2, 5, 6229$
Class number $28$ (GRH)
Class group $[28]$ (GRH)
Galois group 16T1862

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![7171, 4667, 7189, -13814, 23765, -23337, 12244, -3056, 1053, -648, 524, -364, 190, -68, 23, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 + 23*x^14 - 68*x^13 + 190*x^12 - 364*x^11 + 524*x^10 - 648*x^9 + 1053*x^8 - 3056*x^7 + 12244*x^6 - 23337*x^5 + 23765*x^4 - 13814*x^3 + 7189*x^2 + 4667*x + 7171)
 
gp: K = bnfinit(x^16 - 4*x^15 + 23*x^14 - 68*x^13 + 190*x^12 - 364*x^11 + 524*x^10 - 648*x^9 + 1053*x^8 - 3056*x^7 + 12244*x^6 - 23337*x^5 + 23765*x^4 - 13814*x^3 + 7189*x^2 + 4667*x + 7171, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} + 23 x^{14} - 68 x^{13} + 190 x^{12} - 364 x^{11} + 524 x^{10} - 648 x^{9} + 1053 x^{8} - 3056 x^{7} + 12244 x^{6} - 23337 x^{5} + 23765 x^{4} - 13814 x^{3} + 7189 x^{2} + 4667 x + 7171 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(58609993297236388431250000=2^{4}\cdot 5^{8}\cdot 6229^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $40.78$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 6229$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{4} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{576748556463497093213122129033928} a^{15} + \frac{33758786408060141774609333836297}{576748556463497093213122129033928} a^{14} + \frac{31064527206514842462169654178001}{144187139115874273303280532258482} a^{13} - \frac{97347577976400616401605143995}{72093569557937136651640266129241} a^{12} + \frac{68863800569726330732294430864575}{288374278231748546606561064516964} a^{11} - \frac{127462647110157161511567001612307}{288374278231748546606561064516964} a^{10} - \frac{63066613304092569887152512986797}{288374278231748546606561064516964} a^{9} - \frac{72999478274748465457081833080757}{288374278231748546606561064516964} a^{8} - \frac{267232708009101067091980057490693}{576748556463497093213122129033928} a^{7} + \frac{272313614889068997330006077547127}{576748556463497093213122129033928} a^{6} - \frac{97106923254446988169191458483865}{576748556463497093213122129033928} a^{5} - \frac{23633080919756367897418726151303}{288374278231748546606561064516964} a^{4} + \frac{118285645919497051793123621077951}{576748556463497093213122129033928} a^{3} - \frac{256134825966544701418162786105747}{576748556463497093213122129033928} a^{2} - \frac{103943849622275082944581340010861}{288374278231748546606561064516964} a + \frac{6922075658426715731762527695953}{576748556463497093213122129033928}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{28}$, which has order $28$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 51887.5885973 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1862:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 73728
The 152 conjugacy class representatives for t16n1862 are not computed
Character table for t16n1862 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 8.8.24250275625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ R ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{5}$ ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.4.2$x^{4} - x^{2} + 5$$2$$2$$4$$C_4$$[2]^{2}$
2.6.0.1$x^{6} - x + 1$$1$$6$$0$$C_6$$[\ ]^{6}$
2.6.0.1$x^{6} - x + 1$$1$$6$$0$$C_6$$[\ ]^{6}$
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.6.3.1$x^{6} - 10 x^{4} + 25 x^{2} - 500$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
5.6.3.1$x^{6} - 10 x^{4} + 25 x^{2} - 500$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
6229Data not computed