Normalized defining polynomial
\( x^{16} - 2 x^{15} + x^{14} - 122 x^{13} + 945 x^{12} - 3644 x^{11} + 9754 x^{10} - 20564 x^{9} + 37061 x^{8} - 64282 x^{7} + 115769 x^{6} - 202954 x^{5} + 307471 x^{4} - 367360 x^{3} + 355184 x^{2} - 289968 x + 142706 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(584793659653495312365912064=2^{34}\cdot 17^{8}\cdot 47^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{17} a^{10} + \frac{8}{17} a^{9} - \frac{3}{17} a^{8} + \frac{1}{17} a^{7} + \frac{7}{17} a^{6} + \frac{6}{17} a^{5} + \frac{8}{17} a^{4} + \frac{2}{17} a^{3} + \frac{8}{17} a^{2} - \frac{2}{17} a - \frac{4}{17}$, $\frac{1}{17} a^{11} + \frac{1}{17} a^{9} + \frac{8}{17} a^{8} - \frac{1}{17} a^{7} + \frac{1}{17} a^{6} - \frac{6}{17} a^{5} + \frac{6}{17} a^{4} - \frac{8}{17} a^{3} + \frac{2}{17} a^{2} - \frac{5}{17} a - \frac{2}{17}$, $\frac{1}{136} a^{12} - \frac{1}{68} a^{11} + \frac{3}{136} a^{10} - \frac{23}{68} a^{9} - \frac{5}{17} a^{8} + \frac{11}{68} a^{7} - \frac{11}{136} a^{6} - \frac{19}{68} a^{5} + \frac{47}{136} a^{4} + \frac{7}{17} a^{3} - \frac{11}{34} a^{2} - \frac{8}{17} a + \frac{15}{68}$, $\frac{1}{136} a^{13} - \frac{1}{136} a^{11} + \frac{13}{34} a^{9} - \frac{21}{68} a^{8} - \frac{63}{136} a^{7} - \frac{13}{34} a^{6} - \frac{61}{136} a^{5} + \frac{31}{68} a^{4} + \frac{3}{34} a^{3} + \frac{4}{17} a^{2} - \frac{21}{68} a + \frac{9}{34}$, $\frac{1}{641512} a^{14} + \frac{99}{160378} a^{13} - \frac{411}{160378} a^{12} + \frac{8741}{320756} a^{11} - \frac{13381}{641512} a^{10} + \frac{4503}{80189} a^{9} + \frac{10665}{641512} a^{8} - \frac{124537}{320756} a^{7} - \frac{31055}{160378} a^{6} - \frac{22033}{160378} a^{5} + \frac{320735}{641512} a^{4} + \frac{35262}{80189} a^{3} - \frac{32519}{320756} a^{2} - \frac{35233}{160378} a - \frac{8097}{320756}$, $\frac{1}{85138526526032085645373744} a^{15} + \frac{14925096753275805567}{85138526526032085645373744} a^{14} + \frac{1571322719039387813403}{803193646472000807975224} a^{13} - \frac{114965630100041358835751}{42569263263016042822686872} a^{12} + \frac{58075712990149390888617}{1979965733163536875473808} a^{11} + \frac{2073674656852757742917853}{85138526526032085645373744} a^{10} + \frac{231591718814945982889505}{956612657595866130846896} a^{9} + \frac{27117943541925499281797133}{85138526526032085645373744} a^{8} - \frac{10211468895540716636313743}{21284631631508021411343436} a^{7} - \frac{667897418897993959030693}{3040661661644003058763348} a^{6} - \frac{21448893085636706436291115}{85138526526032085645373744} a^{5} - \frac{2222132267045292641340907}{5008148619178357979139632} a^{4} - \frac{10056498939700326694660623}{42569263263016042822686872} a^{3} + \frac{361805638713559071767093}{42569263263016042822686872} a^{2} - \frac{19864399242505164898254397}{42569263263016042822686872} a + \frac{15936286722311113875855001}{42569263263016042822686872}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9591102.68109 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2.C_2\wr C_2^2$ (as 16T394):
| A solvable group of order 128 |
| The 17 conjugacy class representatives for $C_2.C_2\wr C_2^2$ |
| Character table for $C_2.C_2\wr C_2^2$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{34}) \), 4.0.1088.2 x2, 4.0.2312.1 x2, \(\Q(\sqrt{2}, \sqrt{17})\), 8.0.342102016.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.10.2 | $x^{4} + 2 x^{2} - 1$ | $4$ | $1$ | $10$ | $D_{4}$ | $[2, 3, 7/2]$ |
| 2.4.10.2 | $x^{4} + 2 x^{2} - 1$ | $4$ | $1$ | $10$ | $D_{4}$ | $[2, 3, 7/2]$ | |
| 2.4.8.3 | $x^{4} + 6 x^{2} + 4 x + 14$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| $17$ | 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $47$ | $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 47.2.1.1 | $x^{2} - 47$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.1 | $x^{2} - 47$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.1 | $x^{2} - 47$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.1 | $x^{2} - 47$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |