Normalized defining polynomial
\( x^{16} - 14 x^{14} + 95 x^{12} - 20 x^{10} + 791 x^{8} + 4594 x^{6} + 20057 x^{4} + 3136 x^{2} + 1024 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(584793659653495312365912064=2^{34}\cdot 17^{8}\cdot 47^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a$, $\frac{1}{8} a^{10} - \frac{1}{4} a^{6} + \frac{1}{8} a^{2}$, $\frac{1}{8} a^{11} - \frac{1}{4} a^{5} - \frac{1}{8} a^{3} + \frac{1}{4} a$, $\frac{1}{160} a^{12} - \frac{1}{16} a^{11} - \frac{1}{32} a^{10} + \frac{7}{80} a^{8} - \frac{1}{8} a^{7} + \frac{13}{80} a^{6} - \frac{1}{4} a^{5} - \frac{39}{160} a^{4} - \frac{5}{16} a^{3} + \frac{67}{160} a^{2} + \frac{1}{4} a + \frac{2}{5}$, $\frac{1}{160} a^{13} - \frac{1}{32} a^{11} - \frac{1}{16} a^{10} + \frac{7}{80} a^{9} - \frac{7}{80} a^{7} + \frac{1}{8} a^{6} + \frac{1}{160} a^{5} - \frac{53}{160} a^{3} + \frac{7}{16} a^{2} + \frac{3}{20} a$, $\frac{1}{2501561550720} a^{14} - \frac{775852973}{1250780775360} a^{12} - \frac{1}{16} a^{11} + \frac{39033386059}{2501561550720} a^{10} - \frac{1}{8} a^{9} + \frac{26321906513}{625390387680} a^{8} - \frac{1}{8} a^{7} - \frac{19106588845}{500312310144} a^{6} + \frac{207139812883}{1250780775360} a^{4} - \frac{5}{16} a^{3} - \frac{720382103483}{2501561550720} a^{2} + \frac{1}{8} a + \frac{9104438893}{78173798460}$, $\frac{1}{20012492405760} a^{15} + \frac{7041526873}{10006246202880} a^{13} - \frac{977225993921}{20012492405760} a^{11} - \frac{1}{16} a^{10} + \frac{47478232471}{1000624620288} a^{9} - \frac{2190590742953}{20012492405760} a^{7} + \frac{1}{8} a^{6} - \frac{1661213970311}{10006246202880} a^{5} - \frac{3737890724039}{20012492405760} a^{3} - \frac{1}{16} a^{2} + \frac{196721555197}{625390387680} a - \frac{1}{2}$
Class group and class number
$C_{2}\times C_{2}\times C_{20}$, which has order $80$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 288544.780632 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3$ (as 16T373):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $C_2^4.C_2^3$ |
| Character table for $C_2^4.C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{34}) \), \(\Q(\sqrt{17}) \), 4.0.108664.1, \(\Q(\sqrt{2}, \sqrt{17})\), 4.0.434656.1, 8.0.3022813413376.6, 8.0.257260716032.1, 8.8.257260716032.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.8.22.90 | $x^{8} + 4 x^{7} + 14 x^{4} + 12 x^{2} + 2$ | $8$ | $1$ | $22$ | $D_4$ | $[2, 3, 7/2]$ | |
| $17$ | 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $47$ | $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 47.2.1.1 | $x^{2} - 47$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.1 | $x^{2} - 47$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.1 | $x^{2} - 47$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.1 | $x^{2} - 47$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |