Normalized defining polynomial
\( x^{16} - 8 x^{15} + 64 x^{14} - 304 x^{13} + 1316 x^{12} - 4232 x^{11} + 11516 x^{10} - 24328 x^{9} + 41656 x^{8} - 54352 x^{7} + 53360 x^{6} - 32216 x^{5} + 7088 x^{4} + 13664 x^{3} - 5852 x^{2} + 5320 x + 4201 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(58432555897690521600000000=2^{48}\cdot 3^{12}\cdot 5^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{23} a^{14} - \frac{4}{23} a^{13} + \frac{3}{23} a^{11} - \frac{6}{23} a^{10} - \frac{7}{23} a^{9} - \frac{3}{23} a^{7} - \frac{9}{23} a^{6} - \frac{10}{23} a^{5} + \frac{1}{23} a^{4} + \frac{8}{23} a^{3} + \frac{11}{23} a^{2} + \frac{7}{23} a - \frac{4}{23}$, $\frac{1}{62457458684098527924323638549657} a^{15} + \frac{326795252736978432282953800084}{62457458684098527924323638549657} a^{14} + \frac{24560991610655052255149670285812}{62457458684098527924323638549657} a^{13} + \frac{8395609396155262616217424149516}{62457458684098527924323638549657} a^{12} + \frac{9202018408749136567609698006223}{62457458684098527924323638549657} a^{11} - \frac{10518258636189457733058491260601}{62457458684098527924323638549657} a^{10} + \frac{18689919324603854914787237297934}{62457458684098527924323638549657} a^{9} - \frac{24164018119275086589002309385055}{62457458684098527924323638549657} a^{8} + \frac{28419034404553818812298823918242}{62457458684098527924323638549657} a^{7} - \frac{519601163151038459024450342012}{62457458684098527924323638549657} a^{6} + \frac{321086438724792039115065847217}{62457458684098527924323638549657} a^{5} - \frac{6344098396384531564714573363307}{62457458684098527924323638549657} a^{4} - \frac{483293464720937196500261526350}{2715541681917327301057549502159} a^{3} + \frac{275123274102913818725527326589}{62457458684098527924323638549657} a^{2} - \frac{10953930932862900165175726735015}{62457458684098527924323638549657} a + \frac{11200856641190420600609882837759}{62457458684098527924323638549657}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 178556.167066 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2^2\times C_4):C_2$ (as 16T54):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $(C_2^2\times C_4):C_2$ |
| Character table for $(C_2^2\times C_4):C_2$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{6}) \), 4.4.691200.2 x2, \(\Q(\sqrt{2}, \sqrt{3})\), 4.4.345600.1 x2, 8.8.1911029760000.6, 8.0.19110297600.3, 8.0.8493465600.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |