Normalized defining polynomial
\( x^{16} - 60 x^{14} + 1800 x^{12} - 36000 x^{10} + 579375 x^{8} - 8100000 x^{6} + 91125000 x^{4} - 683437500 x^{2} + 2562890625 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(58432555897690521600000000=2^{48}\cdot 3^{12}\cdot 5^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{5} a^{2}$, $\frac{1}{5} a^{3}$, $\frac{1}{75} a^{4}$, $\frac{1}{75} a^{5}$, $\frac{1}{375} a^{6}$, $\frac{1}{375} a^{7}$, $\frac{1}{5625} a^{8}$, $\frac{1}{5625} a^{9}$, $\frac{1}{84375} a^{10} + \frac{1}{15} a^{2}$, $\frac{1}{253125} a^{11} - \frac{1}{16875} a^{9} - \frac{1}{1125} a^{7} + \frac{1}{225} a^{5} + \frac{4}{45} a^{3}$, $\frac{1}{3796875} a^{12} - \frac{1}{253125} a^{10} - \frac{1}{16875} a^{8} + \frac{4}{3375} a^{6} + \frac{4}{675} a^{4} - \frac{1}{15} a^{2}$, $\frac{1}{3796875} a^{13} + \frac{1}{16875} a^{9} + \frac{1}{3375} a^{7} - \frac{2}{675} a^{5} + \frac{1}{45} a^{3}$, $\frac{1}{1309921875} a^{14} - \frac{1}{17465625} a^{12} - \frac{11}{1940625} a^{10} - \frac{2}{1164375} a^{8} - \frac{98}{232875} a^{6} + \frac{71}{15525} a^{4} + \frac{8}{345} a^{2} + \frac{3}{23}$, $\frac{1}{3929765625} a^{15} - \frac{28}{261984375} a^{13} - \frac{2}{3493125} a^{11} + \frac{274}{3493125} a^{9} - \frac{374}{698625} a^{7} - \frac{7}{15525} a^{5} + \frac{20}{207} a^{3} + \frac{1}{23} a$
Class group and class number
$C_{2}\times C_{6}\times C_{6}$, which has order $72$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{19}{436640625} a^{14} + \frac{193}{87328125} a^{12} - \frac{304}{5821875} a^{10} + \frac{337}{388125} a^{8} - \frac{22}{1725} a^{6} + \frac{2623}{15525} a^{4} - \frac{502}{345} a^{2} + \frac{128}{23} \) (order $24$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 313644.780941 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times Q_8$ (as 16T7):
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $D_8$ |
| Character table for $D_8$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $5$ | 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |