Normalized defining polynomial
\( x^{16} - 20 x^{14} - 24 x^{13} + 178 x^{12} + 408 x^{11} - 200 x^{10} - 1320 x^{9} - 113 x^{8} + 3840 x^{7} + 11128 x^{6} + 20184 x^{5} + 32086 x^{4} + 39336 x^{3} + 53260 x^{2} + 32616 x + 27646 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(58432555897690521600000000=2^{48}\cdot 3^{12}\cdot 5^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a$, $\frac{1}{69} a^{12} + \frac{1}{23} a^{11} - \frac{11}{69} a^{10} + \frac{7}{69} a^{9} + \frac{1}{23} a^{8} - \frac{25}{69} a^{7} - \frac{7}{23} a^{6} + \frac{1}{23} a^{5} - \frac{16}{69} a^{4} - \frac{19}{69} a^{3} - \frac{8}{23} a^{2} + \frac{7}{69} a + \frac{1}{3}$, $\frac{1}{69} a^{13} + \frac{1}{23} a^{11} - \frac{2}{23} a^{10} + \frac{5}{69} a^{9} - \frac{11}{69} a^{8} + \frac{8}{69} a^{7} + \frac{20}{69} a^{6} + \frac{7}{23} a^{5} + \frac{2}{23} a^{4} + \frac{10}{69} a^{3} - \frac{13}{69} a^{2} - \frac{7}{23} a - \frac{1}{3}$, $\frac{1}{26427} a^{14} - \frac{53}{8809} a^{13} + \frac{19}{26427} a^{12} - \frac{343}{26427} a^{11} + \frac{1013}{26427} a^{10} - \frac{2189}{26427} a^{9} - \frac{2128}{26427} a^{8} - \frac{865}{8809} a^{7} + \frac{8419}{26427} a^{6} + \frac{11113}{26427} a^{5} - \frac{1568}{26427} a^{4} + \frac{10421}{26427} a^{3} - \frac{2275}{8809} a^{2} - \frac{3373}{8809} a - \frac{310}{1149}$, $\frac{1}{186606439817510114292027} a^{15} + \frac{801229691612260037}{186606439817510114292027} a^{14} + \frac{51283238722819264383}{62202146605836704764009} a^{13} + \frac{376359236740182395729}{186606439817510114292027} a^{12} - \frac{3386183242855843527646}{62202146605836704764009} a^{11} - \frac{802209498537335990956}{62202146605836704764009} a^{10} + \frac{17008997562650639604079}{186606439817510114292027} a^{9} + \frac{15454115887311182390863}{186606439817510114292027} a^{8} - \frac{3613423635700702751057}{62202146605836704764009} a^{7} - \frac{20127889560048146550530}{62202146605836704764009} a^{6} + \frac{19163081775292674411934}{62202146605836704764009} a^{5} + \frac{30380175198581915158170}{62202146605836704764009} a^{4} + \frac{1757415632986298094992}{8113323470326526708349} a^{3} + \frac{13962030639811094794265}{62202146605836704764009} a^{2} - \frac{6722565334430047044564}{62202146605836704764009} a - \frac{362941406181619191721}{8113323470326526708349}$
Class group and class number
$C_{6}\times C_{24}$, which has order $144$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 45687.5845647 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times Q_8$ (as 16T7):
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $D_8$ |
| Character table for $D_8$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.24.4 | $x^{8} + 14 x^{4} + 8 x^{3} + 12 x^{2} + 8 x + 14$ | $8$ | $1$ | $24$ | $Q_8$ | $[2, 3, 4]$ |
| 2.8.24.4 | $x^{8} + 14 x^{4} + 8 x^{3} + 12 x^{2} + 8 x + 14$ | $8$ | $1$ | $24$ | $Q_8$ | $[2, 3, 4]$ | |
| $3$ | 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |