Normalized defining polynomial
\( x^{16} - 2 x^{15} + 75 x^{14} - 375 x^{13} + 3106 x^{12} - 4679 x^{11} - 108941 x^{10} + 1419676 x^{9} - 2696526 x^{8} - 21246331 x^{7} + 166298404 x^{6} - 479007815 x^{5} - 51797314 x^{4} + 5658707593 x^{3} - 7312336230 x^{2} - 32602890292 x + 78854279291 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(582477092451999490195840776529155641=41^{9}\cdot 59^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $171.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{7} a^{13} - \frac{1}{7} a^{12} - \frac{1}{7} a^{11} - \frac{1}{7} a^{10} + \frac{3}{7} a^{9} - \frac{1}{7} a^{8} - \frac{1}{7} a^{7} - \frac{1}{7} a^{5} - \frac{1}{7} a^{4} + \frac{3}{7} a^{3} + \frac{3}{7} a^{2} + \frac{1}{7} a - \frac{3}{7}$, $\frac{1}{1127} a^{14} + \frac{15}{1127} a^{13} - \frac{318}{1127} a^{12} + \frac{277}{1127} a^{11} - \frac{251}{1127} a^{10} - \frac{233}{1127} a^{9} + \frac{158}{1127} a^{8} + \frac{54}{1127} a^{7} + \frac{349}{1127} a^{6} + \frac{116}{1127} a^{5} - \frac{496}{1127} a^{4} - \frac{334}{1127} a^{3} - \frac{32}{161} a^{2} - \frac{358}{1127} a - \frac{272}{1127}$, $\frac{1}{107413493035545653806187977897773144205901414209694146052365065737349427096861} a^{15} + \frac{2593908627813756179843344040266253902001553207520231627567346175916856687}{107413493035545653806187977897773144205901414209694146052365065737349427096861} a^{14} + \frac{5995762438494319972218564708516930019775878801075489428949144529237438764284}{107413493035545653806187977897773144205901414209694146052365065737349427096861} a^{13} + \frac{3453535014792954415467929294886334989218419964803988478966242890513842462542}{107413493035545653806187977897773144205901414209694146052365065737349427096861} a^{12} + \frac{2735626317187158182187696314125487483197356842437507614150328275662449799559}{107413493035545653806187977897773144205901414209694146052365065737349427096861} a^{11} + \frac{3626880750013037020812623041385677172233154545709069164966855291703626405892}{15344784719363664829455425413967592029414487744242020864623580819621346728123} a^{10} - \frac{7349851041337909990586224619685670534778546959896417283607087920116193848552}{15344784719363664829455425413967592029414487744242020864623580819621346728123} a^{9} + \frac{12208817453124000374243577909394992327343230005002653562922854338441416388256}{107413493035545653806187977897773144205901414209694146052365065737349427096861} a^{8} - \frac{3271404276480087406991638992630501469946452379476491857324394314217147388142}{107413493035545653806187977897773144205901414209694146052365065737349427096861} a^{7} + \frac{39712633520941158072818122470116964974020158148092201797688390105434767093503}{107413493035545653806187977897773144205901414209694146052365065737349427096861} a^{6} + \frac{34409243372082551894697979761056790936280956880978468208752810145069693128606}{107413493035545653806187977897773144205901414209694146052365065737349427096861} a^{5} + \frac{50012043587133032206092329294021666699011736164903592363188848823925213213147}{107413493035545653806187977897773144205901414209694146052365065737349427096861} a^{4} + \frac{46617933693364620611044217449297183350032225588529827087531526717047977303683}{107413493035545653806187977897773144205901414209694146052365065737349427096861} a^{3} - \frac{41055231555912047524863316132602463859478858704601974304473361031135824829989}{107413493035545653806187977897773144205901414209694146052365065737349427096861} a^{2} - \frac{43705199367801060405547686533609842375181053891255623137356668504377952622497}{107413493035545653806187977897773144205901414209694146052365065737349427096861} a + \frac{28667634535449352136667311728532824081916443462110676182691124413783041238462}{107413493035545653806187977897773144205901414209694146052365065737349427096861}$
Class group and class number
$C_{6}$, which has order $6$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 43814744973.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T260):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-59}) \), 4.0.142721.1, 8.0.835140637481.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | $16$ | $16$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $41$ | 41.4.2.2 | $x^{4} - 41 x^{2} + 20172$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.8.7.4 | $x^{8} - 1912896$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| $59$ | 59.8.6.2 | $x^{8} + 177 x^{4} + 13924$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 59.8.6.2 | $x^{8} + 177 x^{4} + 13924$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |