Normalized defining polynomial
\( x^{16} - 4 x^{15} + 10 x^{14} - 17 x^{13} + 23 x^{12} - 27 x^{11} + 30 x^{10} - 30 x^{9} + 25 x^{8} + \cdots + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(5821863490955437\)
\(\medspace = 19^{2}\cdot 101^{2}\cdot 277\cdot 2389^{2}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(9.67\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $19^{1/2}101^{1/2}277^{1/2}2389^{1/2}\approx 35635.71252269274$ | ||
Ramified primes: |
\(19\), \(101\), \(277\), \(2389\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{277}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{37}a^{15}-\frac{15}{37}a^{14}-\frac{10}{37}a^{13}-\frac{18}{37}a^{12}-\frac{1}{37}a^{11}-\frac{16}{37}a^{10}-\frac{16}{37}a^{9}-\frac{2}{37}a^{8}+\frac{10}{37}a^{7}-\frac{13}{37}a^{6}+\frac{1}{37}a^{5}-\frac{18}{37}a^{4}-\frac{9}{37}a^{3}+\frac{5}{37}a^{2}-\frac{3}{37}a-\frac{10}{37}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{378}{37}a^{15}-\frac{1267}{37}a^{14}+\frac{2954}{37}a^{13}-\frac{4510}{37}a^{12}+\frac{5764}{37}a^{11}-\frac{6455}{37}a^{10}+\frac{7124}{37}a^{9}-\frac{6676}{37}a^{8}+\frac{5075}{37}a^{7}-\frac{1954}{37}a^{6}+\frac{933}{37}a^{5}-\frac{1994}{37}a^{4}+\frac{4331}{37}a^{3}-\frac{4733}{37}a^{2}+\frac{2603}{37}a-\frac{561}{37}$, $\frac{480}{37}a^{15}-\frac{1613}{37}a^{14}+\frac{3784}{37}a^{13}-\frac{5791}{37}a^{12}+\frac{7438}{37}a^{11}-\frac{8346}{37}a^{10}+\frac{9229}{37}a^{9}-\frac{8693}{37}a^{8}+\frac{6650}{37}a^{7}-\frac{2651}{37}a^{6}+\frac{1294}{37}a^{5}-\frac{2572}{37}a^{4}+\frac{5596}{37}a^{3}-\frac{6110}{37}a^{2}+\frac{3407}{37}a-\frac{804}{37}$, $a$, $\frac{344}{37}a^{15}-\frac{1127}{37}a^{14}+\frac{2628}{37}a^{13}-\frac{3972}{37}a^{12}+\frac{5095}{37}a^{11}-\frac{5689}{37}a^{10}+\frac{6299}{37}a^{9}-\frac{5868}{37}a^{8}+\frac{4476}{37}a^{7}-\frac{1697}{37}a^{6}+\frac{899}{37}a^{5}-\frac{1752}{37}a^{4}+\frac{3860}{37}a^{3}-\frac{4126}{37}a^{2}+\frac{2261}{37}a-\frac{517}{37}$, $\frac{344}{37}a^{15}-\frac{1127}{37}a^{14}+\frac{2591}{37}a^{13}-\frac{3898}{37}a^{12}+\frac{4947}{37}a^{11}-\frac{5541}{37}a^{10}+\frac{6114}{37}a^{9}-\frac{5683}{37}a^{8}+\frac{4254}{37}a^{7}-\frac{1586}{37}a^{6}+\frac{825}{37}a^{5}-\frac{1826}{37}a^{4}+\frac{3749}{37}a^{3}-\frac{4015}{37}a^{2}+\frac{2076}{37}a-\frac{443}{37}$, $\frac{405}{37}a^{15}-\frac{1413}{37}a^{14}+\frac{3313}{37}a^{13}-\frac{5144}{37}a^{12}+\frac{6588}{37}a^{11}-\frac{7442}{37}a^{10}+\frac{8209}{37}a^{9}-\frac{7803}{37}a^{8}+\frac{5974}{37}a^{7}-\frac{2490}{37}a^{6}+\frac{1108}{37}a^{5}-\frac{2295}{37}a^{4}+\frac{4902}{37}a^{3}-\frac{5523}{37}a^{2}+\frac{3114}{37}a-\frac{720}{37}$, $\frac{324}{37}a^{15}-\frac{1123}{37}a^{14}+\frac{2643}{37}a^{13}-\frac{4093}{37}a^{12}+\frac{5263}{37}a^{11}-\frac{5924}{37}a^{10}+\frac{6545}{37}a^{9}-\frac{6198}{37}a^{8}+\frac{4757}{37}a^{7}-\frac{1955}{37}a^{6}+\frac{879}{37}a^{5}-\frac{1762}{37}a^{4}+\frac{3892}{37}a^{3}-\frac{4337}{37}a^{2}+\frac{2506}{37}a-\frac{576}{37}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 10.6211653408 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 10.6211653408 \cdot 1}{2\cdot\sqrt{5821863490955437}}\cr\approx \mathstrut & 0.169063599720 \end{aligned}\]
Galois group
$C_2^8.S_8$ (as 16T1948):
A non-solvable group of order 10321920 |
The 185 conjugacy class representatives for $C_2^8.S_8$ |
Character table for $C_2^8.S_8$ |
Intermediate fields
8.2.4584491.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $16$ | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.5.0.1}{5} }^{2}$ | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.12.0.1}{12} }{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.12.0.1}{12} }{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}$ | R | ${\href{/padicField/23.12.0.1}{12} }{,}\,{\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.2.0.1}{2} }$ | ${\href{/padicField/37.3.0.1}{3} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{3}{,}\,{\href{/padicField/37.1.0.1}{1} }^{4}$ | ${\href{/padicField/41.10.0.1}{10} }{,}\,{\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.7.0.1}{7} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }$ | ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.5.0.1}{5} }^{2}$ | ${\href{/padicField/59.12.0.1}{12} }{,}\,{\href{/padicField/59.4.0.1}{4} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(19\)
| 19.2.0.1 | $x^{2} + 18 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
19.4.2.1 | $x^{4} + 36 x^{3} + 366 x^{2} + 756 x + 6445$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
19.10.0.1 | $x^{10} + 18 x^{5} + 13 x^{4} + 17 x^{3} + 3 x^{2} + 4 x + 2$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
\(101\)
| $\Q_{101}$ | $x + 99$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{101}$ | $x + 99$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
101.2.0.1 | $x^{2} + 97 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
101.2.0.1 | $x^{2} + 97 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
101.4.2.1 | $x^{4} + 16556 x^{3} + 69319047 x^{2} + 6570770114 x + 216554003$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
101.6.0.1 | $x^{6} + 2 x^{4} + 90 x^{3} + 20 x^{2} + 67 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
\(277\)
| $\Q_{277}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{277}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $10$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | ||
\(2389\)
| $\Q_{2389}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{2389}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{2389}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{2389}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | ||
Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | ||
Deg $4$ | $2$ | $2$ | $2$ |