Normalized defining polynomial
\( x^{16} - 4 x^{15} + 5 x^{14} + 25 x^{13} - 308 x^{12} + 1165 x^{11} - 1271 x^{10} - 4714 x^{9} + 27762 x^{8} - 73079 x^{7} + 123062 x^{6} - 144991 x^{5} + 127502 x^{4} - 86543 x^{3} + 43670 x^{2} - 14196 x + 2197 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(581895727651002533052085321=13^{8}\cdot 61^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{13} a^{10} + \frac{5}{13} a^{8} + \frac{4}{13} a^{7} - \frac{1}{13} a^{4} - \frac{4}{13} a^{3} - \frac{1}{13} a^{2} + \frac{5}{13} a$, $\frac{1}{13} a^{11} + \frac{5}{13} a^{9} + \frac{4}{13} a^{8} - \frac{1}{13} a^{5} - \frac{4}{13} a^{4} - \frac{1}{13} a^{3} + \frac{5}{13} a^{2}$, $\frac{1}{39} a^{12} + \frac{1}{39} a^{11} + \frac{1}{39} a^{10} - \frac{17}{39} a^{9} - \frac{1}{13} a^{8} + \frac{10}{39} a^{7} + \frac{4}{13} a^{6} - \frac{5}{39} a^{5} + \frac{4}{13} a^{4} - \frac{2}{13} a^{3} + \frac{3}{13} a^{2} + \frac{19}{39} a + \frac{1}{3}$, $\frac{1}{39} a^{13} + \frac{14}{39} a^{9} - \frac{14}{39} a^{8} - \frac{4}{39} a^{7} - \frac{17}{39} a^{6} + \frac{17}{39} a^{5} + \frac{1}{13} a^{4} - \frac{6}{13} a^{3} - \frac{8}{39} a^{2} + \frac{2}{13} a - \frac{1}{3}$, $\frac{1}{39} a^{14} - \frac{1}{39} a^{10} - \frac{14}{39} a^{9} - \frac{1}{39} a^{8} + \frac{1}{39} a^{7} + \frac{17}{39} a^{6} + \frac{1}{13} a^{5} - \frac{1}{13} a^{4} + \frac{1}{3} a^{3} - \frac{6}{13} a^{2} - \frac{10}{39} a$, $\frac{1}{35096399360001685114964061} a^{15} + \frac{142167647849128414790311}{35096399360001685114964061} a^{14} - \frac{436667990723017194529717}{35096399360001685114964061} a^{13} - \frac{67738436282219819858243}{11698799786667228371654687} a^{12} + \frac{867298790623071960304115}{35096399360001685114964061} a^{11} + \frac{6139149499755177937152}{11698799786667228371654687} a^{10} - \frac{5908995218096065845398816}{35096399360001685114964061} a^{9} + \frac{13882036527510198080136977}{35096399360001685114964061} a^{8} - \frac{2019791317945769769344807}{35096399360001685114964061} a^{7} - \frac{179225653160217929109224}{35096399360001685114964061} a^{6} - \frac{12255504944771431217171720}{35096399360001685114964061} a^{5} - \frac{263764617342867234573251}{2699723027692437316535697} a^{4} + \frac{1970118366514130819461036}{35096399360001685114964061} a^{3} - \frac{9182899965331335790338515}{35096399360001685114964061} a^{2} - \frac{2595472329544798102694344}{35096399360001685114964061} a - \frac{1137604440742087053499187}{2699723027692437316535697}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2807721.54944 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.SD_{16}$ (as 16T163):
| A solvable group of order 64 |
| The 19 conjugacy class representatives for $C_2^2.SD_{16}$ |
| Character table for $C_2^2.SD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.4.10309.1, 8.4.24122514952861.2, 8.0.6482804341.1, 8.4.395451064801.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $61$ | 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.8.6.1 | $x^{8} - 61 x^{4} + 59536$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |