Normalized defining polynomial
\( x^{16} - 2 x^{15} + 18 x^{14} + 34 x^{13} + 148 x^{12} + 582 x^{11} + 1574 x^{10} + 5218 x^{9} + 12846 x^{8} + 19394 x^{7} + 19806 x^{6} + 16782 x^{5} + 14900 x^{4} + 15322 x^{3} + 15226 x^{2} + 10270 x + 3281 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(58102542838005760000000000=2^{28}\cdot 5^{10}\cdot 53^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8} - \frac{1}{4} a^{4} + \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{9} - \frac{1}{4} a^{5} + \frac{1}{4} a$, $\frac{1}{20} a^{14} - \frac{1}{10} a^{13} - \frac{1}{20} a^{12} + \frac{1}{10} a^{11} - \frac{3}{20} a^{10} + \frac{1}{5} a^{9} + \frac{1}{20} a^{8} + \frac{1}{10} a^{7} - \frac{3}{20} a^{6} - \frac{1}{5} a^{5} + \frac{3}{20} a^{4} + \frac{2}{5} a^{3} - \frac{7}{20} a^{2} - \frac{1}{2} a + \frac{9}{20}$, $\frac{1}{51429780298728103742127380} a^{15} + \frac{82378191597160695626087}{10285956059745620748425476} a^{14} - \frac{44457520091851395325442}{2571489014936405187106369} a^{13} + \frac{524891802923790296411285}{5142978029872810374212738} a^{12} + \frac{6255708263397456782943011}{51429780298728103742127380} a^{11} - \frac{9533526581052508107281957}{51429780298728103742127380} a^{10} + \frac{2463716943651484630899091}{12857445074682025935531845} a^{9} - \frac{2322132839364629845624974}{12857445074682025935531845} a^{8} - \frac{568839901383683892693279}{51429780298728103742127380} a^{7} + \frac{2339489478115833547084859}{10285956059745620748425476} a^{6} - \frac{2061180222717639583401393}{5142978029872810374212738} a^{5} + \frac{5789633666934288901455516}{12857445074682025935531845} a^{4} + \frac{2755349284723426230949619}{51429780298728103742127380} a^{3} + \frac{15236501779843104391962751}{51429780298728103742127380} a^{2} + \frac{69786255072398764201147}{254602872765980711594690} a - \frac{10065768642676772541434201}{25714890149364051871063690}$
Class group and class number
$C_{8}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{17454961387319}{17218562792112020} a^{15} + \frac{20014642780936}{4304640698028005} a^{14} - \frac{472283736260913}{17218562792112020} a^{13} + \frac{215958536918623}{8609281396056010} a^{12} - \frac{2495603645972221}{17218562792112020} a^{11} - \frac{1047252735959221}{4304640698028005} a^{10} - \frac{2017106195104191}{3443712558422404} a^{9} - \frac{12330718566612808}{4304640698028005} a^{8} - \frac{60223225952426161}{17218562792112020} a^{7} - \frac{6263797074409033}{4304640698028005} a^{6} - \frac{25441582632006231}{17218562792112020} a^{5} - \frac{14537013575697177}{8609281396056010} a^{4} - \frac{32051486778324699}{17218562792112020} a^{3} - \frac{11628752537031388}{4304640698028005} a^{2} - \frac{14259051392866901}{17218562792112020} a + \frac{4869939415219506}{4304640698028005} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1686708.55959 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 768 |
| The 31 conjugacy class representatives for t16n1048 |
| Character table for t16n1048 is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 4.4.21200.1, 8.0.7191040000.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.6.5.2 | $x^{6} + 10$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 53 | Data not computed | ||||||