Normalized defining polynomial
\( x^{16} - 6 x^{15} + 20 x^{14} - 49 x^{13} + 102 x^{12} - 175 x^{11} + 258 x^{10} - 345 x^{9} + 403 x^{8} - 403 x^{7} + 370 x^{6} - 287 x^{5} + 186 x^{4} - 103 x^{3} + 42 x^{2} - 10 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(579121000000000000=2^{12}\cdot 5^{12}\cdot 761^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $12.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 761$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{10} a^{14} - \frac{1}{5} a^{13} - \frac{1}{5} a^{12} + \frac{1}{10} a^{11} - \frac{1}{10} a^{10} - \frac{3}{10} a^{9} - \frac{1}{2} a^{8} + \frac{1}{5} a^{7} + \frac{1}{10} a^{6} + \frac{3}{10} a^{5} + \frac{3}{10} a^{4} + \frac{3}{10} a^{3} - \frac{2}{5} a^{2} + \frac{2}{5} a - \frac{1}{10}$, $\frac{1}{710} a^{15} - \frac{12}{355} a^{14} + \frac{97}{710} a^{13} - \frac{2}{71} a^{12} - \frac{124}{355} a^{11} + \frac{29}{710} a^{10} - \frac{132}{355} a^{9} - \frac{104}{355} a^{8} + \frac{121}{355} a^{7} - \frac{72}{355} a^{6} - \frac{233}{710} a^{5} + \frac{1}{355} a^{4} + \frac{15}{71} a^{3} + \frac{37}{710} a^{2} + \frac{43}{355} a + \frac{217}{710}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{86211}{710} a^{15} + \frac{240681}{355} a^{14} - \frac{761909}{355} a^{13} + \frac{3590029}{710} a^{12} - \frac{7299199}{710} a^{11} + \frac{12048633}{710} a^{10} - \frac{3445485}{142} a^{9} + \frac{11285869}{355} a^{8} - \frac{25346641}{710} a^{7} + \frac{24191367}{710} a^{6} - \frac{21825983}{710} a^{5} + \frac{15653407}{710} a^{4} - \frac{4758488}{355} a^{3} + \frac{2457528}{355} a^{2} - \frac{1573189}{710} a + \frac{20711}{71} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 954.558183076 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2048 |
| The 71 conjugacy class representatives for t16n1385 are not computed |
| Character table for t16n1385 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.0.11890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.5 | $x^{8} + 6 x^{6} + 8 x^{5} + 80$ | $2$ | $4$ | $12$ | $C_8$ | $[3]^{4}$ |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 761 | Data not computed | ||||||