Properties

Label 16.0.57845734169...2496.2
Degree $16$
Signature $[0, 8]$
Discriminant $2^{34}\cdot 13^{6}\cdot 17^{8}$
Root discriminant $47.06$
Ramified primes $2, 13, 17$
Class number $4$ (GRH)
Class group $[2, 2]$ (GRH)
Galois group $(C_2^2\times D_4).C_2^3$ (as 16T600)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![263, 452, 1916, 1496, 821, 1160, 1282, 240, 434, -300, 60, -56, 69, 0, -10, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 10*x^14 + 69*x^12 - 56*x^11 + 60*x^10 - 300*x^9 + 434*x^8 + 240*x^7 + 1282*x^6 + 1160*x^5 + 821*x^4 + 1496*x^3 + 1916*x^2 + 452*x + 263)
 
gp: K = bnfinit(x^16 - 10*x^14 + 69*x^12 - 56*x^11 + 60*x^10 - 300*x^9 + 434*x^8 + 240*x^7 + 1282*x^6 + 1160*x^5 + 821*x^4 + 1496*x^3 + 1916*x^2 + 452*x + 263, 1)
 

Normalized defining polynomial

\( x^{16} - 10 x^{14} + 69 x^{12} - 56 x^{11} + 60 x^{10} - 300 x^{9} + 434 x^{8} + 240 x^{7} + 1282 x^{6} + 1160 x^{5} + 821 x^{4} + 1496 x^{3} + 1916 x^{2} + 452 x + 263 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(578457341690661347572842496=2^{34}\cdot 13^{6}\cdot 17^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $47.06$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 13, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{4} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{4} a$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{12} - \frac{1}{2} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{4} - \frac{1}{8} a^{2} + \frac{3}{8}$, $\frac{1}{27458337169223181167708584} a^{15} - \frac{377091092579861079729709}{6864584292305795291927146} a^{14} + \frac{1546272757796803770348889}{27458337169223181167708584} a^{13} + \frac{1375421069848433298809017}{13729168584611590583854292} a^{12} + \frac{1797384649934612278151601}{13729168584611590583854292} a^{11} - \frac{687761793503352968926247}{3432292146152897645963573} a^{10} - \frac{4542155107568152086488849}{13729168584611590583854292} a^{9} - \frac{1258059465206696785518809}{3432292146152897645963573} a^{8} + \frac{521065860347240817894933}{6864584292305795291927146} a^{7} - \frac{131892316314028288466343}{6864584292305795291927146} a^{6} + \frac{3937012149217482185864633}{13729168584611590583854292} a^{5} + \frac{2565630349483261374194657}{6864584292305795291927146} a^{4} - \frac{11962218544181559307778233}{27458337169223181167708584} a^{3} + \frac{3047161076362015265899859}{6864584292305795291927146} a^{2} - \frac{7821074113128316174776615}{27458337169223181167708584} a - \frac{3466490648563884451167319}{13729168584611590583854292}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 4843625.84171 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$(C_2^2\times D_4).C_2^3$ (as 16T600):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 256
The 40 conjugacy class representatives for $(C_2^2\times D_4).C_2^3$
Character table for $(C_2^2\times D_4).C_2^3$ is not computed

Intermediate fields

\(\Q(\sqrt{17}) \), 4.0.120224.1, 4.0.3757.1, 4.4.9248.1, 8.0.14453810176.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ R R ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.9.2$x^{4} - 2 x^{2} + 2$$4$$1$$9$$D_{4}$$[2, 3, 7/2]$
2.4.9.2$x^{4} - 2 x^{2} + 2$$4$$1$$9$$D_{4}$$[2, 3, 7/2]$
2.8.16.10$x^{8} + 2 x^{6} + 4 x^{5} + 6 x^{4} + 4$$4$$2$$16$$D_4\times C_2$$[2, 2, 3]^{2}$
$13$13.4.0.1$x^{4} + x^{2} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
13.4.0.1$x^{4} + x^{2} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
13.8.6.2$x^{8} + 39 x^{4} + 676$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$17$17.8.4.1$x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
17.8.4.1$x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$