Normalized defining polynomial
\( x^{16} - 982 x^{14} + 595168 x^{12} - 290198410 x^{10} + 105599243341 x^{8} - 25577396821670 x^{6} + 3881042372358443 x^{4} - 338349116588169963 x^{2} + 13646747702389521841 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5770469846478308612464977355801600000000=2^{16}\cdot 5^{8}\cdot 29^{6}\cdot 41^{8}\cdot 83^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $305.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29, 41, 83$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{41} a^{8} + \frac{2}{41} a^{6} + \frac{12}{41} a^{4}$, $\frac{1}{41} a^{9} + \frac{2}{41} a^{7} + \frac{12}{41} a^{5}$, $\frac{1}{3403} a^{10} + \frac{14}{3403} a^{8} + \frac{1635}{3403} a^{6} + \frac{964}{3403} a^{4} + \frac{41}{83} a^{2}$, $\frac{1}{3403} a^{11} + \frac{14}{3403} a^{9} + \frac{1635}{3403} a^{7} + \frac{964}{3403} a^{5} + \frac{41}{83} a^{3}$, $\frac{1}{57902045} a^{12} - \frac{7788}{57902045} a^{10} - \frac{347463}{57902045} a^{8} - \frac{9416}{282449} a^{6} + \frac{660638}{1412245} a^{4} - \frac{181}{415} a^{2} + \frac{1}{5}$, $\frac{1}{57902045} a^{13} - \frac{7788}{57902045} a^{11} - \frac{347463}{57902045} a^{9} - \frac{9416}{282449} a^{7} + \frac{660638}{1412245} a^{5} - \frac{181}{415} a^{3} + \frac{1}{5} a$, $\frac{1}{402555814120266289501852018314608722470877257406795} a^{14} + \frac{388954719925269591016826294399889488287523}{402555814120266289501852018314608722470877257406795} a^{12} - \frac{21603713865486844762906651008244356415399911581}{402555814120266289501852018314608722470877257406795} a^{10} + \frac{53346974845737307097204651568879795281699855432}{9818434490738202182972000446697773718801884326995} a^{8} + \frac{506998836277978525780975816712914104264751621868}{9818434490738202182972000446697773718801884326995} a^{6} - \frac{255122658289699891100425700612908970919618758}{577045811974034803583426414733927341686857733} a^{4} + \frac{9862369486881329046426042422482015629435369}{34761795902050289372495567152646225402822755} a^{2} - \frac{133108492716143260615449568089163256452}{352242908407898602374127971796145646365}$, $\frac{1}{4428113955322929184520372201460695947179649831474745} a^{15} + \frac{2858734616149077068003010631091675929883325}{885622791064585836904074440292139189435929966294949} a^{13} + \frac{106695122449800363253099988238742332301338312573}{4428113955322929184520372201460695947179649831474745} a^{11} - \frac{941601077789079493825071081749225524249553195514}{108002779398120224012692004913675510906820727596945} a^{9} + \frac{7371271625872240967010185480077353649658549760698}{108002779398120224012692004913675510906820727596945} a^{7} + \frac{2565817467323350097927512255169060631540311887}{31737519658571914197088452810366003792777175315} a^{5} + \frac{2776602188122489370673057748750388099060805}{76475950984510636619490247735821695886210061} a^{3} - \frac{1753425871392476831536438238351433229731}{3874671992486884626115407689757602110015} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{4}$, which has order $32$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 592634255788 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2^2\times D_4).C_2^3$ (as 16T600):
| A solvable group of order 256 |
| The 40 conjugacy class representatives for $(C_2^2\times D_4).C_2^3$ |
| Character table for $(C_2^2\times D_4).C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.725.1, 4.0.29725.2, 4.0.1025.1, 8.0.883575625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.6 | $x^{8} + 2 x^{7} + 2 x^{6} + 16 x^{2} + 16$ | $2$ | $4$ | $8$ | $(C_8:C_2):C_2$ | $[2, 2, 2]^{4}$ |
| 2.8.8.6 | $x^{8} + 2 x^{7} + 2 x^{6} + 16 x^{2} + 16$ | $2$ | $4$ | $8$ | $(C_8:C_2):C_2$ | $[2, 2, 2]^{4}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $29$ | 29.4.2.2 | $x^{4} - 29 x^{2} + 2523$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $41$ | 41.4.2.2 | $x^{4} - 41 x^{2} + 20172$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 41.4.3.4 | $x^{4} + 8856$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.3.4 | $x^{4} + 8856$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $83$ | 83.4.2.2 | $x^{4} - 83 x^{2} + 13778$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 83.4.2.2 | $x^{4} - 83 x^{2} + 13778$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 83.4.0.1 | $x^{4} - x + 22$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 83.4.0.1 | $x^{4} - x + 22$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |