Normalized defining polynomial
\( x^{16} - 4 x^{15} - 4 x^{14} + 24 x^{13} + 126 x^{12} - 368 x^{11} + 998 x^{10} - 278 x^{9} + 5507 x^{8} - 5336 x^{7} + 60702 x^{6} - 65514 x^{5} + 337471 x^{4} - 293202 x^{3} + 975099 x^{2} - 500742 x + 1094031 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5760649700315136000000000000=2^{24}\cdot 3^{8}\cdot 5^{12}\cdot 11^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $54.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1320=2^{3}\cdot 3\cdot 5\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1320}(1,·)$, $\chi_{1320}(197,·)$, $\chi_{1320}(769,·)$, $\chi_{1320}(529,·)$, $\chi_{1320}(661,·)$, $\chi_{1320}(857,·)$, $\chi_{1320}(901,·)$, $\chi_{1320}(353,·)$, $\chi_{1320}(1189,·)$, $\chi_{1320}(1253,·)$, $\chi_{1320}(593,·)$, $\chi_{1320}(617,·)$, $\chi_{1320}(109,·)$, $\chi_{1320}(241,·)$, $\chi_{1320}(1013,·)$, $\chi_{1320}(1277,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{19} a^{11} - \frac{5}{19} a^{10} + \frac{7}{19} a^{9} + \frac{9}{19} a^{8} + \frac{5}{19} a^{7} + \frac{6}{19} a^{6} - \frac{2}{19} a^{5} + \frac{5}{19} a^{4} + \frac{2}{19} a^{3} - \frac{9}{19} a^{2} - \frac{2}{19} a + \frac{1}{19}$, $\frac{1}{57} a^{12} + \frac{1}{57} a^{10} + \frac{25}{57} a^{9} + \frac{4}{19} a^{8} + \frac{4}{19} a^{7} - \frac{10}{57} a^{6} - \frac{8}{19} a^{5} + \frac{9}{19} a^{4} + \frac{1}{57} a^{3} + \frac{10}{57} a^{2} - \frac{3}{19} a + \frac{8}{19}$, $\frac{1}{57} a^{13} + \frac{1}{57} a^{11} + \frac{25}{57} a^{10} + \frac{4}{19} a^{9} + \frac{4}{19} a^{8} - \frac{10}{57} a^{7} - \frac{8}{19} a^{6} + \frac{9}{19} a^{5} + \frac{1}{57} a^{4} + \frac{10}{57} a^{3} - \frac{3}{19} a^{2} + \frac{8}{19} a$, $\frac{1}{52023762805047} a^{14} - \frac{322540314367}{52023762805047} a^{13} - \frac{45147098300}{17341254268349} a^{12} - \frac{20742399496}{912697593071} a^{11} - \frac{12338905110029}{52023762805047} a^{10} - \frac{19258732930636}{52023762805047} a^{9} + \frac{11587999349018}{52023762805047} a^{8} - \frac{21693218868023}{52023762805047} a^{7} - \frac{7267668743120}{52023762805047} a^{6} - \frac{23446325917676}{52023762805047} a^{5} - \frac{7280313240731}{17341254268349} a^{4} - \frac{12003183469238}{52023762805047} a^{3} - \frac{24710866679140}{52023762805047} a^{2} - \frac{8102194368328}{17341254268349} a + \frac{7968726511604}{17341254268349}$, $\frac{1}{21858540439792451341539813} a^{15} + \frac{1574126830}{662380013327043980046661} a^{14} + \frac{36784008103751602516840}{7286180146597483780513271} a^{13} + \frac{11328851044601095439268}{7286180146597483780513271} a^{12} + \frac{236903843690395027167608}{21858540439792451341539813} a^{11} - \frac{272154057203458938509143}{1987140039981131940139983} a^{10} + \frac{6234748941316013494396402}{21858540439792451341539813} a^{9} + \frac{1943707027006310302242820}{7286180146597483780513271} a^{8} - \frac{2058110187134127877239608}{21858540439792451341539813} a^{7} + \frac{3627895489698210230961677}{21858540439792451341539813} a^{6} - \frac{5923138187375710864580645}{21858540439792451341539813} a^{5} - \frac{47219756729736321978205}{21858540439792451341539813} a^{4} + \frac{10306679681614560805779883}{21858540439792451341539813} a^{3} - \frac{2146939206221654124589330}{21858540439792451341539813} a^{2} + \frac{1057626076337168715312506}{7286180146597483780513271} a + \frac{3379088564389689710142701}{7286180146597483780513271}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{8}\times C_{24}$, which has order $1536$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16694.393243512957 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $11$ | 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |