Normalized defining polynomial
\( x^{16} - 8 x^{15} + 24 x^{14} - 28 x^{13} + 112 x^{12} - 672 x^{11} + 2154 x^{10} - 4324 x^{9} + 11499 x^{8} - 28016 x^{7} + 70602 x^{6} - 123900 x^{5} + 296066 x^{4} - 413680 x^{3} + 760490 x^{2} - 570320 x + 1060195 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5760649700315136000000000000=2^{24}\cdot 3^{8}\cdot 5^{12}\cdot 11^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $54.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1320=2^{3}\cdot 3\cdot 5\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1320}(1,·)$, $\chi_{1320}(67,·)$, $\chi_{1320}(769,·)$, $\chi_{1320}(529,·)$, $\chi_{1320}(131,·)$, $\chi_{1320}(659,·)$, $\chi_{1320}(857,·)$, $\chi_{1320}(353,·)$, $\chi_{1320}(1123,·)$, $\chi_{1320}(593,·)$, $\chi_{1320}(617,·)$, $\chi_{1320}(43,·)$, $\chi_{1320}(419,·)$, $\chi_{1320}(241,·)$, $\chi_{1320}(307,·)$, $\chi_{1320}(1211,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{4} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{40} a^{12} + \frac{1}{10} a^{11} + \frac{3}{40} a^{10} - \frac{1}{10} a^{8} + \frac{7}{40} a^{6} + \frac{1}{5} a^{5} - \frac{1}{10} a^{4} - \frac{1}{2} a^{3} - \frac{1}{8} a^{2} - \frac{1}{2} a + \frac{3}{8}$, $\frac{1}{40} a^{13} - \frac{3}{40} a^{11} - \frac{1}{20} a^{10} - \frac{1}{10} a^{9} - \frac{1}{10} a^{8} - \frac{3}{40} a^{7} - \frac{1}{4} a^{6} + \frac{1}{10} a^{5} - \frac{1}{10} a^{4} + \frac{1}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{8} a - \frac{1}{2}$, $\frac{1}{846118375333160} a^{14} - \frac{7}{846118375333160} a^{13} - \frac{14275073587}{1572710734820} a^{12} + \frac{46079937538927}{846118375333160} a^{11} + \frac{249408017891}{846118375333160} a^{10} - \frac{293639931603}{423059187666580} a^{9} - \frac{78834864998093}{846118375333160} a^{8} - \frac{20375923233069}{846118375333160} a^{7} + \frac{80727512890443}{846118375333160} a^{6} + \frac{40646921045147}{423059187666580} a^{5} - \frac{24037306376473}{169223675066632} a^{4} - \frac{17466710993385}{169223675066632} a^{3} - \frac{6363952881195}{84611837533316} a^{2} + \frac{34057394561573}{169223675066632} a + \frac{13658367148125}{169223675066632}$, $\frac{1}{208775478521580564200} a^{15} + \frac{24673}{41755095704316112840} a^{14} + \frac{777959700204847257}{104387739260790282100} a^{13} - \frac{622201692257940201}{208775478521580564200} a^{12} - \frac{5596618136287869151}{208775478521580564200} a^{11} - \frac{935065271964055957}{20877547852158056420} a^{10} + \frac{1652829558912164489}{208775478521580564200} a^{9} - \frac{25271937474139177977}{208775478521580564200} a^{8} - \frac{38859979357677419107}{208775478521580564200} a^{7} - \frac{8974893909938762571}{104387739260790282100} a^{6} - \frac{47105260347808659919}{208775478521580564200} a^{5} - \frac{24568847164644172837}{208775478521580564200} a^{4} - \frac{87761030026981779}{5219386963039514105} a^{3} - \frac{8442829635966609607}{41755095704316112840} a^{2} - \frac{105549967172218673}{41755095704316112840} a + \frac{255550818225308819}{5219386963039514105}$
Class group and class number
$C_{4}\times C_{4}\times C_{4}\times C_{16}$, which has order $1024$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19771.344992359085 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.2 | $x^{8} + 2 x^{6} + 8 x^{4} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
| 2.8.12.2 | $x^{8} + 2 x^{6} + 8 x^{4} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $11$ | 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |