Normalized defining polynomial
\( x^{16} - 4 x^{15} + 2 x^{14} + 14 x^{13} - 26 x^{12} + 8 x^{11} + 25 x^{10} - 42 x^{9} + 69 x^{8} - 156 x^{7} + 292 x^{6} - 376 x^{5} + 352 x^{4} - 256 x^{3} + 152 x^{2} - 64 x + 16 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5746000197058560000=2^{24}\cdot 3^{8}\cdot 5^{4}\cdot 17^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $14.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{13} - \frac{1}{2} a^{9} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{56} a^{14} + \frac{1}{14} a^{13} + \frac{1}{14} a^{12} + \frac{5}{28} a^{11} - \frac{5}{28} a^{10} + \frac{5}{14} a^{9} - \frac{19}{56} a^{8} - \frac{5}{28} a^{7} - \frac{1}{56} a^{6} - \frac{1}{14} a^{5} + \frac{5}{28} a^{4} + \frac{5}{14} a^{3} - \frac{3}{14} a^{2} + \frac{1}{7}$, $\frac{1}{548900744} a^{15} - \frac{230259}{39207196} a^{14} - \frac{18596017}{274450372} a^{13} - \frac{18540147}{274450372} a^{12} + \frac{54367911}{274450372} a^{11} - \frac{28243893}{137225186} a^{10} - \frac{164175495}{548900744} a^{9} + \frac{8661523}{68612593} a^{8} + \frac{55595957}{548900744} a^{7} + \frac{9573253}{39207196} a^{6} + \frac{12227589}{137225186} a^{5} - \frac{6790034}{68612593} a^{4} + \frac{44642001}{137225186} a^{3} - \frac{30319185}{68612593} a^{2} - \frac{17751516}{68612593} a - \frac{28690323}{68612593}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{569183}{5601028} a^{15} - \frac{2156837}{5601028} a^{14} + \frac{317861}{2800514} a^{13} + \frac{8472487}{5601028} a^{12} - \frac{3371563}{1400257} a^{11} + \frac{185845}{2800514} a^{10} + \frac{17681753}{5601028} a^{9} - \frac{20554153}{5601028} a^{8} + \frac{30880457}{5601028} a^{7} - \frac{39364751}{2800514} a^{6} + \frac{72644603}{2800514} a^{5} - \frac{168956867}{5601028} a^{4} + \frac{34865335}{1400257} a^{3} - \frac{42347435}{2800514} a^{2} + \frac{11018766}{1400257} a - \frac{2474011}{1400257} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1926.34951853 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times D_4):C_2^2$ (as 16T115):
| A solvable group of order 64 |
| The 25 conjugacy class representatives for $(C_2\times D_4):C_2^2$ |
| Character table for $(C_2\times D_4):C_2^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-3}) \), 4.0.1088.2, 4.4.9792.1, \(\Q(\sqrt{2}, \sqrt{-3})\), 8.0.95883264.1, 8.0.8294400.1, 8.0.2397081600.7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $17$ | 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |