Normalized defining polynomial
\( x^{16} + 6 x^{14} - 7 x^{13} + 27 x^{12} - 43 x^{11} + 137 x^{10} - 155 x^{9} + 402 x^{8} - 413 x^{7} + 649 x^{6} - 349 x^{5} + 574 x^{4} + 206 x^{3} + 527 x^{2} + 546 x + 441 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(57355639689187890625=5^{8}\cdot 59^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{42} a^{12} + \frac{5}{42} a^{11} - \frac{1}{7} a^{10} + \frac{5}{42} a^{9} + \frac{1}{21} a^{8} - \frac{19}{42} a^{7} + \frac{11}{42} a^{6} + \frac{1}{3} a^{5} - \frac{10}{21} a^{4} + \frac{1}{14} a^{3} + \frac{11}{42} a^{2} - \frac{1}{14} a - \frac{1}{2}$, $\frac{1}{42} a^{13} - \frac{1}{14} a^{11} - \frac{1}{6} a^{10} + \frac{5}{42} a^{9} - \frac{1}{42} a^{8} + \frac{4}{21} a^{7} - \frac{13}{42} a^{6} - \frac{10}{21} a^{5} + \frac{5}{42} a^{4} - \frac{2}{21} a^{3} + \frac{2}{7} a^{2} - \frac{1}{7} a - \frac{1}{2}$, $\frac{1}{126} a^{14} - \frac{1}{126} a^{13} - \frac{1}{126} a^{12} + \frac{10}{63} a^{11} + \frac{2}{63} a^{9} + \frac{13}{126} a^{8} + \frac{25}{126} a^{7} + \frac{5}{42} a^{6} - \frac{31}{126} a^{5} - \frac{7}{18} a^{4} + \frac{25}{63} a^{3} - \frac{19}{63} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4927530202761474} a^{15} + \frac{177178330771}{351966443054391} a^{14} - \frac{28832325788960}{2463765101380737} a^{13} + \frac{49839273716873}{4927530202761474} a^{12} - \frac{10113273177824}{273751677931193} a^{11} + \frac{10723912286855}{2463765101380737} a^{10} - \frac{374728989542861}{4927530202761474} a^{9} - \frac{89571611115808}{2463765101380737} a^{8} - \frac{146366450767057}{821255033793579} a^{7} - \frac{480812801808986}{2463765101380737} a^{6} - \frac{203872515868922}{2463765101380737} a^{5} - \frac{283739461374667}{703932886108782} a^{4} - \frac{110549309456914}{2463765101380737} a^{3} + \frac{38302983713735}{78214765123198} a^{2} + \frac{146744650733216}{821255033793579} a - \frac{38928104432583}{78214765123198}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 859.305557763 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $D_{8}$ |
| Character table for $D_{8}$ |
Intermediate fields
| \(\Q(\sqrt{-295}) \), \(\Q(\sqrt{-59}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{-59})\), 4.0.17405.1 x2, 4.2.1475.1 x2, 8.0.7573350625.1, 8.0.1514670125.1 x4, 8.2.128361875.1 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $59$ | 59.4.2.1 | $x^{4} + 177 x^{2} + 13924$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 59.4.2.1 | $x^{4} + 177 x^{2} + 13924$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 59.4.2.1 | $x^{4} + 177 x^{2} + 13924$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 59.4.2.1 | $x^{4} + 177 x^{2} + 13924$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |