Normalized defining polynomial
\( x^{16} - x^{15} - x^{14} + 7 x^{13} - 12 x^{12} + 13 x^{11} + 42 x^{10} - 137 x^{9} + 141 x^{8} + 262 x^{7} + 269 x^{6} + 182 x^{5} - 95 x^{4} + 21 x^{3} + 90 x^{2} + 108 x + 81 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5688009063105712890625=5^{12}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(65=5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{65}(64,·)$, $\chi_{65}(1,·)$, $\chi_{65}(8,·)$, $\chi_{65}(12,·)$, $\chi_{65}(14,·)$, $\chi_{65}(18,·)$, $\chi_{65}(21,·)$, $\chi_{65}(27,·)$, $\chi_{65}(31,·)$, $\chi_{65}(34,·)$, $\chi_{65}(38,·)$, $\chi_{65}(44,·)$, $\chi_{65}(47,·)$, $\chi_{65}(51,·)$, $\chi_{65}(53,·)$, $\chi_{65}(57,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{6} a^{10} - \frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{2} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{2}$, $\frac{1}{6} a^{11} - \frac{1}{2} a^{6} - \frac{1}{6} a$, $\frac{1}{6} a^{12} - \frac{1}{2} a^{7} - \frac{1}{6} a^{2}$, $\frac{1}{331986} a^{13} + \frac{3178}{165993} a^{12} - \frac{3721}{331986} a^{11} - \frac{8987}{331986} a^{10} + \frac{6975}{55331} a^{9} - \frac{71747}{331986} a^{8} - \frac{7592}{55331} a^{7} + \frac{31471}{331986} a^{6} - \frac{6973}{110662} a^{5} - \frac{4495}{165993} a^{4} - \frac{101683}{331986} a^{3} - \frac{39449}{165993} a^{2} - \frac{120563}{331986} a - \frac{33801}{110662}$, $\frac{1}{995958} a^{14} - \frac{1}{995958} a^{13} - \frac{36257}{497979} a^{12} + \frac{37202}{497979} a^{11} + \frac{23539}{331986} a^{10} + \frac{140575}{995958} a^{9} - \frac{32879}{331986} a^{8} + \frac{139868}{497979} a^{7} + \frac{17582}{165993} a^{6} - \frac{485279}{995958} a^{5} + \frac{278141}{995958} a^{4} + \frac{275177}{995958} a^{3} - \frac{181408}{497979} a^{2} - \frac{13227}{55331} a + \frac{26005}{110662}$, $\frac{1}{2987874} a^{15} - \frac{1}{2987874} a^{14} - \frac{1}{2987874} a^{13} + \frac{4471}{2987874} a^{12} - \frac{3877}{995958} a^{11} - \frac{88612}{1493937} a^{10} + \frac{72791}{995958} a^{9} + \frac{574117}{2987874} a^{8} - \frac{191983}{995958} a^{7} + \frac{329545}{2987874} a^{6} - \frac{718601}{1493937} a^{5} - \frac{260161}{2987874} a^{4} - \frac{1289093}{2987874} a^{3} - \frac{250667}{995958} a^{2} - \frac{41681}{110662} a + \frac{4525}{110662}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1763}{331986} a^{15} - \frac{1763}{331986} a^{14} + \frac{12341}{331986} a^{13} - \frac{3526}{55331} a^{12} - \frac{808}{55331} a^{11} + \frac{12341}{55331} a^{10} - \frac{241531}{331986} a^{9} + \frac{82861}{110662} a^{8} + \frac{230953}{165993} a^{7} - \frac{357312}{55331} a^{6} + \frac{160433}{165993} a^{5} - \frac{167485}{331986} a^{4} + \frac{12341}{110662} a^{3} + \frac{26445}{55331} a^{2} - \frac{574247}{165993} a + \frac{47601}{110662} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 68071.7952641 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4^2$ |
| Character table for $C_4^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 13 | Data not computed | ||||||