Normalized defining polynomial
\( x^{16} - 8 x^{15} + 28 x^{14} - 56 x^{13} + 83 x^{12} - 134 x^{11} + 220 x^{10} - 253 x^{9} + 196 x^{8} - 168 x^{7} + 187 x^{6} - 144 x^{5} + 58 x^{4} - 11 x^{3} - 2 x^{2} + 3 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5641101078795050625=3^{12}\cdot 5^{4}\cdot 19^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $14.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{14} a^{13} - \frac{3}{14} a^{12} - \frac{2}{7} a^{11} - \frac{1}{14} a^{10} - \frac{3}{14} a^{9} - \frac{2}{7} a^{8} + \frac{3}{14} a^{7} + \frac{3}{14} a^{6} - \frac{3}{7} a^{5} + \frac{5}{14} a^{4} + \frac{1}{14} a^{3} - \frac{2}{7} a^{2} + \frac{1}{14} a - \frac{5}{14}$, $\frac{1}{1946} a^{14} - \frac{1}{278} a^{13} + \frac{463}{1946} a^{12} - \frac{741}{1946} a^{11} + \frac{631}{1946} a^{10} - \frac{97}{1946} a^{9} + \frac{747}{1946} a^{8} - \frac{541}{1946} a^{7} + \frac{955}{1946} a^{6} - \frac{923}{1946} a^{5} + \frac{65}{1946} a^{4} + \frac{615}{1946} a^{3} + \frac{213}{1946} a^{2} + \frac{565}{1946} a - \frac{645}{1946}$, $\frac{1}{95354} a^{15} + \frac{17}{95354} a^{14} + \frac{1329}{47677} a^{13} + \frac{8452}{47677} a^{12} + \frac{20099}{95354} a^{11} - \frac{2986}{6811} a^{10} - \frac{443}{47677} a^{9} - \frac{38769}{95354} a^{8} - \frac{21930}{47677} a^{7} - \frac{3944}{47677} a^{6} - \frac{5129}{95354} a^{5} + \frac{21590}{47677} a^{4} + \frac{1857}{47677} a^{3} - \frac{15451}{95354} a^{2} + \frac{14450}{47677} a + \frac{27193}{95354}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{205}{973} a^{14} + \frac{205}{139} a^{13} - \frac{4426}{973} a^{12} + \frac{7901}{973} a^{11} - \frac{11622}{973} a^{10} + \frac{19885}{973} a^{9} - \frac{30537}{973} a^{8} + \frac{31119}{973} a^{7} - \frac{24527}{973} a^{6} + \frac{22832}{973} a^{5} - \frac{23055}{973} a^{4} + \frac{16956}{973} a^{3} - \frac{6691}{973} a^{2} + \frac{935}{973} a + \frac{870}{973} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1361.78824522 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:D_4$ (as 16T43):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_2^2:D_4$ |
| Character table for $C_2^2:D_4$ |
Intermediate fields
| \(\Q(\sqrt{-19}) \), \(\Q(\sqrt{57}) \), \(\Q(\sqrt{-3}) \), 4.0.1805.1, 4.0.16245.1, 4.0.513.1 x2, \(\Q(\sqrt{-3}, \sqrt{-19})\), 4.2.9747.1 x2, 8.0.95004009.1, 8.0.2375100225.1, 8.0.263900025.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $19$ | 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |