Normalized defining polynomial
\( x^{16} - 3 x^{15} + 49 x^{14} - 37 x^{13} + 357 x^{12} + 1172 x^{11} - 3371 x^{10} + 3679 x^{9} - 7306 x^{8} - 78822 x^{7} + 259075 x^{6} - 811880 x^{5} + 2060975 x^{4} - 1675190 x^{3} - 504530 x^{2} + 752231 x + 364951 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5614886866882301027209678756129=23^{6}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $83.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{10} a^{12} - \frac{1}{5} a^{11} - \frac{3}{10} a^{9} - \frac{3}{10} a^{8} + \frac{2}{5} a^{7} - \frac{1}{10} a^{6} - \frac{2}{5} a^{5} + \frac{3}{10} a^{4} + \frac{1}{10} a^{3} - \frac{3}{10} a^{2} + \frac{3}{10} a - \frac{1}{5}$, $\frac{1}{10} a^{13} + \frac{1}{10} a^{11} + \frac{1}{5} a^{10} - \frac{2}{5} a^{9} - \frac{1}{5} a^{8} + \frac{1}{5} a^{7} - \frac{1}{10} a^{6} - \frac{1}{2} a^{5} - \frac{3}{10} a^{4} + \frac{2}{5} a^{3} - \frac{3}{10} a^{2} - \frac{1}{10} a - \frac{2}{5}$, $\frac{1}{17020} a^{14} + \frac{39}{1702} a^{13} - \frac{243}{8510} a^{12} - \frac{4179}{17020} a^{11} + \frac{734}{4255} a^{10} + \frac{369}{17020} a^{9} + \frac{919}{8510} a^{8} - \frac{2101}{4255} a^{7} + \frac{103}{4255} a^{6} + \frac{493}{1702} a^{5} - \frac{2917}{17020} a^{4} + \frac{19}{92} a^{3} - \frac{439}{3404} a^{2} - \frac{157}{851} a + \frac{2659}{17020}$, $\frac{1}{54693406499448325975775734972570742453901740} a^{15} + \frac{466144436155152438308269695279815206327}{27346703249724162987887867486285371226950870} a^{14} + \frac{543523557682223382219417251591152221327209}{27346703249724162987887867486285371226950870} a^{13} - \frac{2475731535088665421447253087760773641810927}{54693406499448325975775734972570742453901740} a^{12} + \frac{1442364533875750260539174583172928368069811}{27346703249724162987887867486285371226950870} a^{11} + \frac{1683831825079377394591108420082640883811291}{54693406499448325975775734972570742453901740} a^{10} + \frac{635507938843365906415944381664579649877293}{2734670324972416298788786748628537122695087} a^{9} + \frac{6391702232592382283653959806555619365529633}{13673351624862081493943933743142685613475435} a^{8} + \frac{7410921561187898664262949883416590352789959}{27346703249724162987887867486285371226950870} a^{7} + \frac{974796418332582066566955733319856997750722}{13673351624862081493943933743142685613475435} a^{6} - \frac{15724183290091360336202193285938423649619541}{54693406499448325975775734972570742453901740} a^{5} - \frac{16641427045907906055507268292836559082168957}{54693406499448325975775734972570742453901740} a^{4} - \frac{2011537945952357811425315913544880754416993}{54693406499448325975775734972570742453901740} a^{3} + \frac{582684086205303911638241220321991208605701}{2734670324972416298788786748628537122695087} a^{2} + \frac{21280506377221658480112977884927684231435153}{54693406499448325975775734972570742453901740} a + \frac{1074949189702163854934280973355306079818937}{13673351624862081493943933743142685613475435}$
Class group and class number
$C_{4}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 32641463.1312 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^5.C_2.C_2$ (as 16T258):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $C_2^5.C_2.C_2$ |
| Character table for $C_2^5.C_2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.6.57794518300247.1, 8.0.194754273881.1, 8.2.2369575250310127.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{12}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $41$ | 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |