Properties

Label 16.0.56148868668...6129.2
Degree $16$
Signature $[0, 8]$
Discriminant $23^{6}\cdot 41^{14}$
Root discriminant $83.53$
Ramified primes $23, 41$
Class number $16$ (GRH)
Class group $[4, 4]$ (GRH)
Galois group $C_2^5.C_2.C_2$ (as 16T257)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![65536, 0, 717824, 0, -882864, 0, 514808, 0, -61087, 0, 3843, 0, -284, 0, -1, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - x^14 - 284*x^12 + 3843*x^10 - 61087*x^8 + 514808*x^6 - 882864*x^4 + 717824*x^2 + 65536)
 
gp: K = bnfinit(x^16 - x^14 - 284*x^12 + 3843*x^10 - 61087*x^8 + 514808*x^6 - 882864*x^4 + 717824*x^2 + 65536, 1)
 

Normalized defining polynomial

\( x^{16} - x^{14} - 284 x^{12} + 3843 x^{10} - 61087 x^{8} + 514808 x^{6} - 882864 x^{4} + 717824 x^{2} + 65536 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(5614886866882301027209678756129=23^{6}\cdot 41^{14}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $83.53$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $23, 41$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{8} a^{3} - \frac{3}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{8} a^{4} - \frac{1}{2} a^{3} + \frac{1}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{32} a^{11} - \frac{1}{32} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} + \frac{3}{32} a^{5} - \frac{15}{32} a^{3} - \frac{3}{8} a^{2} - \frac{3}{8} a$, $\frac{1}{1472} a^{12} + \frac{19}{1472} a^{10} - \frac{3}{46} a^{8} - \frac{11}{64} a^{6} + \frac{125}{1472} a^{4} + \frac{159}{368} a^{2} - \frac{1}{2} a - \frac{10}{23}$, $\frac{1}{5888} a^{13} - \frac{1}{2944} a^{12} + \frac{19}{5888} a^{11} - \frac{19}{2944} a^{10} - \frac{3}{184} a^{9} + \frac{3}{92} a^{8} - \frac{11}{256} a^{7} + \frac{11}{128} a^{6} - \frac{611}{5888} a^{5} + \frac{611}{2944} a^{4} - \frac{577}{1472} a^{3} - \frac{159}{736} a^{2} - \frac{5}{46} a + \frac{5}{23}$, $\frac{1}{328286881159174144} a^{14} - \frac{61983342040657}{328286881159174144} a^{12} - \frac{1}{64} a^{11} + \frac{1564059843934461}{82071720289793536} a^{10} - \frac{3}{64} a^{9} - \frac{9348312876417}{102685918410752} a^{8} - \frac{1}{4} a^{7} + \frac{20174298539573873}{328286881159174144} a^{6} - \frac{3}{64} a^{5} + \frac{6362801881205981}{41035860144896768} a^{4} + \frac{19}{64} a^{3} - \frac{3661095801210471}{20517930072448384} a^{2} + \frac{5}{16} a - \frac{2520314123125}{13938811190522}$, $\frac{1}{2626295049273393152} a^{15} + \frac{49527147483519}{2626295049273393152} a^{13} - \frac{1}{2944} a^{12} + \frac{2093734669174297}{656573762318348288} a^{11} - \frac{19}{2944} a^{10} - \frac{292025634965655}{18894208987578368} a^{9} + \frac{3}{92} a^{8} + \frac{156105585269544417}{2626295049273393152} a^{7} + \frac{11}{128} a^{6} - \frac{63707601973548113}{328286881159174144} a^{5} + \frac{611}{2944} a^{4} - \frac{60782344059969627}{164143440579587072} a^{3} + \frac{209}{736} a^{2} - \frac{232285731059875}{641185314764012} a - \frac{13}{46}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{4}\times C_{4}$, which has order $16$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 37533039.8671 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^5.C_2.C_2$ (as 16T257):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 128
The 26 conjugacy class representatives for $C_2^5.C_2.C_2$
Character table for $C_2^5.C_2.C_2$ is not computed

Intermediate fields

\(\Q(\sqrt{41}) \), 4.4.68921.1, 8.2.109252397543.1, 8.4.103025010883049.3, 8.2.2369575250310127.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ R ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$23$23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.4.2.1$x^{4} + 299 x^{2} + 25921$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
23.4.2.1$x^{4} + 299 x^{2} + 25921$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
23.4.2.1$x^{4} + 299 x^{2} + 25921$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$41$41.8.7.3$x^{8} - 53136$$8$$1$$7$$C_8$$[\ ]_{8}$
41.8.7.3$x^{8} - 53136$$8$$1$$7$$C_8$$[\ ]_{8}$