Normalized defining polynomial
\( x^{16} - 8 x^{15} + 92 x^{14} - 504 x^{13} + 3508 x^{12} - 14860 x^{11} + 77626 x^{10} - 262972 x^{9} + 1107333 x^{8} - 2996084 x^{7} + 10483974 x^{6} - 21926452 x^{5} + 64443548 x^{4} - 95384228 x^{3} + 234422198 x^{2} - 189953172 x + 382482481 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5611988462318125056000000000000=2^{32}\cdot 3^{8}\cdot 5^{12}\cdot 13^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $83.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1560=2^{3}\cdot 3\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1560}(1,·)$, $\chi_{1560}(389,·)$, $\chi_{1560}(1481,·)$, $\chi_{1560}(1483,·)$, $\chi_{1560}(781,·)$, $\chi_{1560}(1169,·)$, $\chi_{1560}(467,·)$, $\chi_{1560}(469,·)$, $\chi_{1560}(1327,·)$, $\chi_{1560}(1247,·)$, $\chi_{1560}(1249,·)$, $\chi_{1560}(547,·)$, $\chi_{1560}(623,·)$, $\chi_{1560}(1403,·)$, $\chi_{1560}(701,·)$, $\chi_{1560}(703,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a$, $\frac{1}{4757893582676181418} a^{14} - \frac{7}{4757893582676181418} a^{13} + \frac{563730373568230345}{4757893582676181418} a^{12} - \frac{644053562305065}{3053846972192671} a^{11} - \frac{313859293980189991}{2378946791338090709} a^{10} + \frac{419254203660648979}{2378946791338090709} a^{9} + \frac{20716387892670401}{116046184943321498} a^{8} - \frac{217376839202605762}{2378946791338090709} a^{7} + \frac{312150889342897816}{2378946791338090709} a^{6} + \frac{324130544633695745}{2378946791338090709} a^{5} - \frac{1775058287954727537}{4757893582676181418} a^{4} + \frac{555207561262299977}{2378946791338090709} a^{3} + \frac{1346636417608762303}{4757893582676181418} a^{2} + \frac{12562510692322995}{250415451719799022} a + \frac{11315768339626209}{58023092471660749}$, $\frac{1}{22382278065262182349993738} a^{15} + \frac{2352113}{22382278065262182349993738} a^{14} + \frac{2365333550189845260800500}{11191139032631091174996869} a^{13} - \frac{722763401373883908369562}{11191139032631091174996869} a^{12} - \frac{32213863881271207805916}{141659987754823938924011} a^{11} + \frac{2055874852311532275934133}{22382278065262182349993738} a^{10} - \frac{243523132141486575573082}{11191139032631091174996869} a^{9} - \frac{3201689921039064920553237}{22382278065262182349993738} a^{8} - \frac{718890132726879531557091}{11191139032631091174996869} a^{7} + \frac{1906357010133412641316177}{22382278065262182349993738} a^{6} + \frac{2757015038945108268099909}{11191139032631091174996869} a^{5} + \frac{8088509656295422104332525}{22382278065262182349993738} a^{4} + \frac{3236556665715110301292437}{22382278065262182349993738} a^{3} + \frac{1274710861702555609443723}{11191139032631091174996869} a^{2} + \frac{5530292966468268193177116}{11191139032631091174996869} a + \frac{127540001681852723901249}{545909221103955667073018}$
Class group and class number
$C_{2}\times C_{4}\times C_{8}\times C_{2080}$, which has order $133120$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7114.135357253273 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.3 | $x^{8} + 2 x^{6} + 6 x^{4} + 4 x^{2} + 8 x + 28$ | $4$ | $2$ | $16$ | $C_4\times C_2$ | $[2, 3]^{2}$ |
| 2.8.16.3 | $x^{8} + 2 x^{6} + 6 x^{4} + 4 x^{2} + 8 x + 28$ | $4$ | $2$ | $16$ | $C_4\times C_2$ | $[2, 3]^{2}$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $13$ | 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |