Normalized defining polynomial
\( x^{16} - 4 x^{15} + 24 x^{14} - 112 x^{13} + 474 x^{12} - 1560 x^{11} + 4176 x^{10} - 9968 x^{9} + 19152 x^{8} - 28104 x^{7} + 32076 x^{6} - 33696 x^{5} + 73280 x^{4} - 188216 x^{3} + 269568 x^{2} - 186288 x + 49726 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(56118626684141976944640000=2^{46}\cdot 3^{12}\cdot 5^{4}\cdot 7^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{13} a^{13} - \frac{1}{13} a^{12} - \frac{1}{13} a^{11} + \frac{4}{13} a^{10} - \frac{5}{13} a^{9} - \frac{5}{13} a^{8} + \frac{5}{13} a^{7} - \frac{6}{13} a^{6} + \frac{1}{13} a^{5} - \frac{2}{13} a^{4} + \frac{6}{13} a^{3} + \frac{3}{13} a^{2} - \frac{6}{13} a + \frac{2}{13}$, $\frac{1}{13} a^{14} - \frac{2}{13} a^{12} + \frac{3}{13} a^{11} - \frac{1}{13} a^{10} + \frac{3}{13} a^{9} - \frac{1}{13} a^{7} - \frac{5}{13} a^{6} - \frac{1}{13} a^{5} + \frac{4}{13} a^{4} - \frac{4}{13} a^{3} - \frac{3}{13} a^{2} - \frac{4}{13} a + \frac{2}{13}$, $\frac{1}{20840033714216807485781985028353625} a^{15} - \frac{86244243415705285132683534144}{6821614963737089193381991825975} a^{14} + \frac{393263583207652434768010846123619}{20840033714216807485781985028353625} a^{13} - \frac{4470592320915957042894934845003241}{20840033714216807485781985028353625} a^{12} - \frac{63179915511352699051746581586729}{4168006742843361497156397005670725} a^{11} + \frac{64174960807509175613742012828752}{4168006742843361497156397005670725} a^{10} - \frac{5745904588199028360644521353927609}{20840033714216807485781985028353625} a^{9} - \frac{7569428788765334782739395595051}{69699109412096346106294264308875} a^{8} - \frac{5708015742031074741013000149515264}{20840033714216807485781985028353625} a^{7} + \frac{240775140607018037662757439907244}{4168006742843361497156397005670725} a^{6} + \frac{6868328525334243276587654848647431}{20840033714216807485781985028353625} a^{5} + \frac{10241755083969709604584611190193008}{20840033714216807485781985028353625} a^{4} + \frac{6550293362634881968817184753010202}{20840033714216807485781985028353625} a^{3} - \frac{99129373833222244277833046350373}{20840033714216807485781985028353625} a^{2} + \frac{980229326861302998431073584209486}{20840033714216807485781985028353625} a + \frac{3755207017760656166926987146681}{19278477071430904242166498638625}$
Class group and class number
$C_{2}\times C_{2}\times C_{14}$, which has order $56$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 63774.9292225 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4:C_2^2$ (as 16T119):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $C_2^4:C_2^2$ |
| Character table for $C_2^4:C_2^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{2}) \), 4.0.13824.1 x2, 4.0.27648.1 x2, \(\Q(\sqrt{2}, \sqrt{3})\), 8.8.26011238400.1, 8.0.3745618329600.19, 8.0.3057647616.7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $7$ | 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |