Properties

Label 16.0.56118626684...0000.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{46}\cdot 3^{12}\cdot 5^{4}\cdot 7^{4}$
Root discriminant $40.67$
Ramified primes $2, 3, 5, 7$
Class number $112$ (GRH)
Class group $[2, 2, 28]$ (GRH)
Galois group $C_2^4:C_2^2$ (as 16T119)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![117889, -175344, 193260, -146992, 95420, -35352, 12924, 888, -1002, 848, 180, -288, 228, -104, 36, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 8*x^15 + 36*x^14 - 104*x^13 + 228*x^12 - 288*x^11 + 180*x^10 + 848*x^9 - 1002*x^8 + 888*x^7 + 12924*x^6 - 35352*x^5 + 95420*x^4 - 146992*x^3 + 193260*x^2 - 175344*x + 117889)
 
gp: K = bnfinit(x^16 - 8*x^15 + 36*x^14 - 104*x^13 + 228*x^12 - 288*x^11 + 180*x^10 + 848*x^9 - 1002*x^8 + 888*x^7 + 12924*x^6 - 35352*x^5 + 95420*x^4 - 146992*x^3 + 193260*x^2 - 175344*x + 117889, 1)
 

Normalized defining polynomial

\( x^{16} - 8 x^{15} + 36 x^{14} - 104 x^{13} + 228 x^{12} - 288 x^{11} + 180 x^{10} + 848 x^{9} - 1002 x^{8} + 888 x^{7} + 12924 x^{6} - 35352 x^{5} + 95420 x^{4} - 146992 x^{3} + 193260 x^{2} - 175344 x + 117889 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(56118626684141976944640000=2^{46}\cdot 3^{12}\cdot 5^{4}\cdot 7^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $40.67$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8} - \frac{1}{4} a^{4} + \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{9} - \frac{1}{4} a^{5} + \frac{1}{4} a$, $\frac{1}{92} a^{14} - \frac{3}{46} a^{13} + \frac{5}{92} a^{12} - \frac{3}{92} a^{11} + \frac{3}{23} a^{10} - \frac{1}{4} a^{9} - \frac{1}{46} a^{8} + \frac{4}{23} a^{7} + \frac{11}{92} a^{6} - \frac{19}{46} a^{5} + \frac{35}{92} a^{4} - \frac{37}{92} a^{3} + \frac{9}{23} a^{2} - \frac{29}{92} a - \frac{19}{46}$, $\frac{1}{5722579400068788606979079145260} a^{15} + \frac{2714588926216870566835771659}{572257940006878860697907914526} a^{14} - \frac{270747043395342414584872676217}{2861289700034394303489539572630} a^{13} - \frac{63386600143287342537895315849}{1430644850017197151744769786315} a^{12} + \frac{4147392284668719057415604125}{49761560000598161799818079524} a^{11} + \frac{344620451321772982098511533633}{1430644850017197151744769786315} a^{10} + \frac{234496895733110381781701670143}{2861289700034394303489539572630} a^{9} + \frac{291010211544776148609444548789}{1430644850017197151744769786315} a^{8} - \frac{1281180961134229059590355111739}{5722579400068788606979079145260} a^{7} + \frac{149848714033075765731326057659}{1430644850017197151744769786315} a^{6} + \frac{6211369182120395862847590703}{1430644850017197151744769786315} a^{5} - \frac{108631694640285542419955635263}{2861289700034394303489539572630} a^{4} - \frac{208325541793330168851761483433}{5722579400068788606979079145260} a^{3} - \frac{39073593313606961212483408091}{124403900001495404499545198810} a^{2} + \frac{144405921571260069313433850738}{1430644850017197151744769786315} a + \frac{484694002163062269300250241281}{2861289700034394303489539572630}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{28}$, which has order $112$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 20146.2577766 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^4:C_2^2$ (as 16T119):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 64
The 22 conjugacy class representatives for $C_2^4:C_2^2$
Character table for $C_2^4:C_2^2$ is not computed

Intermediate fields

\(\Q(\sqrt{6}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{2}) \), 4.4.27648.1 x2, 4.4.13824.1 x2, \(\Q(\sqrt{2}, \sqrt{3})\), 8.0.26011238400.1, 8.0.3745618329600.19, 8.8.3057647616.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R R ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
3Data not computed
$5$5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$7$7.4.0.1$x^{4} + x^{2} - 3 x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
7.4.0.1$x^{4} + x^{2} - 3 x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$