Normalized defining polynomial
\( x^{16} - 8 x^{15} + 20 x^{14} - 56 x^{12} - 28 x^{11} + 318 x^{10} - 380 x^{9} - 21 x^{8} + 340 x^{7} - 174 x^{6} - 136 x^{5} + 226 x^{4} - 144 x^{3} + 50 x^{2} - 8 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(56056588304600006656=2^{36}\cdot 13^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{81} a^{12} - \frac{2}{27} a^{11} - \frac{5}{81} a^{10} - \frac{1}{81} a^{9} - \frac{10}{81} a^{8} + \frac{7}{81} a^{7} + \frac{40}{81} a^{6} - \frac{26}{81} a^{5} - \frac{11}{27} a^{4} + \frac{19}{81} a^{3} - \frac{2}{27} a^{2} - \frac{34}{81} a + \frac{26}{81}$, $\frac{1}{405} a^{13} + \frac{1}{405} a^{12} + \frac{34}{405} a^{11} - \frac{7}{45} a^{10} - \frac{17}{405} a^{9} + \frac{2}{45} a^{8} + \frac{62}{405} a^{7} + \frac{146}{405} a^{6} + \frac{1}{405} a^{5} + \frac{166}{405} a^{4} + \frac{181}{405} a^{3} - \frac{76}{405} a^{2} - \frac{77}{405} a + \frac{74}{405}$, $\frac{1}{405} a^{14} - \frac{2}{405} a^{12} - \frac{22}{405} a^{11} - \frac{49}{405} a^{10} - \frac{13}{81} a^{9} - \frac{11}{405} a^{8} - \frac{26}{405} a^{7} - \frac{13}{27} a^{6} - \frac{1}{81} a^{5} + \frac{2}{9} a^{4} + \frac{158}{405} a^{3} - \frac{196}{405} a^{2} - \frac{1}{45} a - \frac{13}{135}$, $\frac{1}{6075} a^{15} + \frac{1}{1215} a^{13} + \frac{2}{1215} a^{12} + \frac{283}{2025} a^{11} - \frac{901}{6075} a^{10} - \frac{58}{1215} a^{9} - \frac{1}{405} a^{8} - \frac{74}{675} a^{7} - \frac{2708}{6075} a^{6} + \frac{1607}{6075} a^{5} + \frac{32}{135} a^{4} + \frac{466}{6075} a^{3} - \frac{691}{6075} a^{2} + \frac{964}{2025} a - \frac{452}{6075}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1046}{6075} a^{15} - \frac{523}{405} a^{14} + \frac{3491}{1215} a^{13} + \frac{221}{243} a^{12} - \frac{16627}{2025} a^{11} - \frac{48191}{6075} a^{10} + \frac{57757}{1215} a^{9} - \frac{6356}{135} a^{8} - \frac{5749}{675} a^{7} + \frac{271682}{6075} a^{6} - \frac{118928}{6075} a^{5} - \frac{8149}{405} a^{4} + \frac{182426}{6075} a^{3} - \frac{105491}{6075} a^{2} + \frac{1531}{225} a - \frac{8962}{6075} \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4427.02461923 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_4$ (as 16T9):
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $D_4\times C_2$ |
| Character table for $D_4\times C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |