Normalized defining polynomial
\( x^{16} - 3 x^{15} + 94 x^{14} - 724 x^{13} + 26159 x^{12} - 167999 x^{11} + 2096914 x^{10} - 10821888 x^{9} - 25156346 x^{8} - 651196200 x^{7} + 18347527091 x^{6} + 172806626196 x^{5} + 741026109860 x^{4} + 1097105545547 x^{3} - 4848874441183 x^{2} - 7650125420549 x + 20600166208723 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5600075906386661768959437042812533816731958913=17^{15}\cdot 89^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $723.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{47} a^{13} + \frac{16}{47} a^{12} - \frac{15}{47} a^{11} + \frac{17}{47} a^{10} + \frac{3}{47} a^{9} + \frac{3}{47} a^{7} - \frac{21}{47} a^{6} - \frac{12}{47} a^{5} - \frac{16}{47} a^{4} - \frac{6}{47} a^{3} - \frac{17}{47} a^{2} - \frac{10}{47} a - \frac{17}{47}$, $\frac{1}{47} a^{14} + \frac{11}{47} a^{12} + \frac{22}{47} a^{11} + \frac{13}{47} a^{10} - \frac{1}{47} a^{9} + \frac{3}{47} a^{8} - \frac{22}{47} a^{7} - \frac{5}{47} a^{6} - \frac{12}{47} a^{5} + \frac{15}{47} a^{4} - \frac{15}{47} a^{3} - \frac{20}{47} a^{2} + \frac{2}{47} a - \frac{10}{47}$, $\frac{1}{10374905496993658293938783470568881792274170192546609205457944903431069451646025384555210366225891} a^{15} - \frac{83585490708544564843759700150843160576821354574656730481019904993527071765015024921925113036524}{10374905496993658293938783470568881792274170192546609205457944903431069451646025384555210366225891} a^{14} + \frac{77287487576916735244598962419326309343779698487694303268623005943077359734598624187519561137563}{10374905496993658293938783470568881792274170192546609205457944903431069451646025384555210366225891} a^{13} - \frac{1556493786511927754543406983720331959965799905828694321824831128677901864403326709652174349936174}{10374905496993658293938783470568881792274170192546609205457944903431069451646025384555210366225891} a^{12} - \frac{1427610261916222157669398580582140407023643797064625082144534163393141188351477717170009000780979}{10374905496993658293938783470568881792274170192546609205457944903431069451646025384555210366225891} a^{11} + \frac{66793425281435291647237855518787207886608735118351248549987225151124745535294681166276171859311}{154849335776024750655802738366699728242898062575322525454596192588523424651433214694853886063073} a^{10} - \frac{5161444152850507702379729277783449510837331151037903643933408990322919168046416976617491556993761}{10374905496993658293938783470568881792274170192546609205457944903431069451646025384555210366225891} a^{9} - \frac{560286435115094424463575197147777441153055919034210454952789074333235478408728655354188573667984}{10374905496993658293938783470568881792274170192546609205457944903431069451646025384555210366225891} a^{8} + \frac{4653545225456375591945415773834279285247849579486944116711447412021404279159802221660536355097953}{10374905496993658293938783470568881792274170192546609205457944903431069451646025384555210366225891} a^{7} - \frac{2851254626908175641173208164535340325424939305111418901984872507448289652706756546255412674413056}{10374905496993658293938783470568881792274170192546609205457944903431069451646025384555210366225891} a^{6} - \frac{2060375081242548260588298057141908451733883491760560577668883315194998953520659616268439866344891}{10374905496993658293938783470568881792274170192546609205457944903431069451646025384555210366225891} a^{5} + \frac{1765455140163029225953842615310663384001702932798589315668699078896334968237038211334712207578362}{10374905496993658293938783470568881792274170192546609205457944903431069451646025384555210366225891} a^{4} - \frac{201559033850645005251622724283635067740548970375043347179816184565281129749513578392170682127659}{10374905496993658293938783470568881792274170192546609205457944903431069451646025384555210366225891} a^{3} - \frac{3890574509808397110867869560467204561671705272309488028853094109293911077233005368000035218635127}{10374905496993658293938783470568881792274170192546609205457944903431069451646025384555210366225891} a^{2} - \frac{3161407425195655634461418700753929439078491843820343839424683241515297471263861714769745466890960}{10374905496993658293938783470568881792274170192546609205457944903431069451646025384555210366225891} a - \frac{95651527035505748228466808077974482891615710920399088461688191348893447763074207782541537878336}{241276872023108332417181010943462367262190004477828121057161509382117894224326171733842101540137}$
Class group and class number
$C_{2}\times C_{6}\times C_{1876632}$, which has order $22519584$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1263629880.47 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.38915873.1, 8.8.203930643438763634753.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{8}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| $89$ | 89.8.7.2 | $x^{8} - 801$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 89.8.7.2 | $x^{8} - 801$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |