Normalized defining polynomial
\( x^{16} - 3 x^{15} + 94 x^{14} + 2302 x^{13} + 26159 x^{12} - 397975 x^{11} + 6284898 x^{10} - 24995672 x^{9} + 142093700 x^{8} - 83458080 x^{7} + 7911836541 x^{6} - 60914865824 x^{5} + 494959575758 x^{4} - 1703233593999 x^{3} + 5636562271845 x^{2} - 6761439893945 x + 19724305333097 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5600075906386661768959437042812533816731958913=17^{15}\cdot 89^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $723.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{1867176554733441482505045549562908774628951339214396775177640220443888295196550154912567390086991} a^{15} - \frac{109315889252526172147254217106454663822350434244017655456214434581969469852283395239762221580604}{1867176554733441482505045549562908774628951339214396775177640220443888295196550154912567390086991} a^{14} - \frac{778472422645740030944150550009794543502550210091039546379142219764938226777293043792450267473783}{1867176554733441482505045549562908774628951339214396775177640220443888295196550154912567390086991} a^{13} - \frac{643803176403802902273398646505724667312041194880751356002492688183678018956458076530472098019825}{1867176554733441482505045549562908774628951339214396775177640220443888295196550154912567390086991} a^{12} + \frac{626053386694812152537093049689121043494084552412737284397159151540958888851719143770231366611729}{1867176554733441482505045549562908774628951339214396775177640220443888295196550154912567390086991} a^{11} + \frac{794040466771596065583998959099660300072663712949040854493591973505944982517413383315929793365495}{1867176554733441482505045549562908774628951339214396775177640220443888295196550154912567390086991} a^{10} + \frac{417447020739055823860395747398673554110220458379130380944363074244954213357015869963445840120749}{1867176554733441482505045549562908774628951339214396775177640220443888295196550154912567390086991} a^{9} - \frac{416468056910891805338207036003572599365144355080918018324631677097598768172347569438299289114734}{1867176554733441482505045549562908774628951339214396775177640220443888295196550154912567390086991} a^{8} + \frac{340035586320431133295154228123125166682692309732024647825400445013654815850424505137179535535976}{1867176554733441482505045549562908774628951339214396775177640220443888295196550154912567390086991} a^{7} + \frac{5054319847947057516576079182179290066128986306001462488869231363575717483264610402453865075408}{1867176554733441482505045549562908774628951339214396775177640220443888295196550154912567390086991} a^{6} - \frac{457524753504957680516211815344998682571246200525656831287312641294084562870976672169151582617195}{1867176554733441482505045549562908774628951339214396775177640220443888295196550154912567390086991} a^{5} + \frac{533372912690474968237580980629607242288576045241548048553058801093391567129701578659989382295647}{1867176554733441482505045549562908774628951339214396775177640220443888295196550154912567390086991} a^{4} + \frac{476242161879031080680737248748767363736009988351410588854148006785243007307064021342839726535867}{1867176554733441482505045549562908774628951339214396775177640220443888295196550154912567390086991} a^{3} - \frac{374302836242552562035942349119779065649995167120029270266615248958904760263508521453232855303443}{1867176554733441482505045549562908774628951339214396775177640220443888295196550154912567390086991} a^{2} - \frac{666497063699153112567174309548625195735769234343992048359732852256843459873524099713290613898974}{1867176554733441482505045549562908774628951339214396775177640220443888295196550154912567390086991} a - \frac{200059831872983962292040472796132259543329635998711615367293478155976164518079232562353945442}{31647060249719347161102466941744216519134768461260962291146444414303191444009324659535040509949}$
Class group and class number
$C_{2}\times C_{2}\times C_{3413896}$, which has order $13655584$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 921838016.564 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.38915873.1, 8.8.203930643438763634753.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| $89$ | 89.8.7.4 | $x^{8} - 64881$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 89.8.7.4 | $x^{8} - 64881$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |