Normalized defining polynomial
\( x^{16} - 5 x^{15} + 15 x^{14} - 30 x^{13} + 49 x^{12} - 70 x^{11} + 90 x^{10} - 105 x^{9} + 111 x^{8} + \cdots + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(5575888916015625\)
\(\medspace = 3^{8}\cdot 5^{12}\cdot 59^{2}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(9.64\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $3^{1/2}5^{3/4}59^{1/2}\approx 44.48505546908213$ | ||
Ramified primes: |
\(3\), \(5\), \(59\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $4$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{29}a^{15}-\frac{6}{29}a^{14}-\frac{8}{29}a^{13}+\frac{7}{29}a^{12}+\frac{13}{29}a^{11}+\frac{4}{29}a^{10}-\frac{1}{29}a^{9}+\frac{12}{29}a^{8}+\frac{12}{29}a^{7}-\frac{1}{29}a^{6}+\frac{4}{29}a^{5}+\frac{13}{29}a^{4}+\frac{7}{29}a^{3}-\frac{8}{29}a^{2}-\frac{6}{29}a+\frac{1}{29}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -\frac{15}{29} a^{15} + \frac{32}{29} a^{14} - \frac{54}{29} a^{13} + \frac{11}{29} a^{12} - \frac{50}{29} a^{11} + \frac{114}{29} a^{10} - \frac{217}{29} a^{9} + \frac{284}{29} a^{8} - \frac{296}{29} a^{7} + \frac{276}{29} a^{6} - \frac{263}{29} a^{5} + \frac{182}{29} a^{4} - \frac{105}{29} a^{3} + \frac{4}{29} a^{2} + \frac{61}{29} a - \frac{44}{29} \)
(order $30$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{4}{29}a^{15}+\frac{5}{29}a^{14}-\frac{32}{29}a^{13}+\frac{115}{29}a^{12}-\frac{180}{29}a^{11}+\frac{306}{29}a^{10}-\frac{439}{29}a^{9}+\frac{541}{29}a^{8}-\frac{590}{29}a^{7}+\frac{576}{29}a^{6}-\frac{506}{29}a^{5}+\frac{400}{29}a^{4}-\frac{291}{29}a^{3}+\frac{171}{29}a^{2}-\frac{82}{29}a+\frac{33}{29}$, $\frac{28}{29}a^{15}-\frac{110}{29}a^{14}+\frac{269}{29}a^{13}-\frac{413}{29}a^{12}+\frac{567}{29}a^{11}-\frac{758}{29}a^{10}+\frac{900}{29}a^{9}-\frac{1027}{29}a^{8}+\frac{1061}{29}a^{7}-\frac{927}{29}a^{6}+\frac{808}{29}a^{5}-\frac{622}{29}a^{4}+\frac{428}{29}a^{3}-\frac{282}{29}a^{2}+\frac{93}{29}a-\frac{1}{29}$, $\frac{7}{29}a^{15}-\frac{42}{29}a^{14}+\frac{147}{29}a^{13}-\frac{357}{29}a^{12}+\frac{700}{29}a^{11}-\frac{1161}{29}a^{10}+\frac{1646}{29}a^{9}-\frac{2004}{29}a^{8}+\frac{2143}{29}a^{7}-\frac{2095}{29}a^{6}+\frac{1797}{29}a^{5}-\frac{1388}{29}a^{4}+\frac{890}{29}a^{3}-\frac{462}{29}a^{2}+\frac{190}{29}a-\frac{51}{29}$, $\frac{12}{29}a^{15}-\frac{72}{29}a^{14}+\frac{252}{29}a^{13}-\frac{583}{29}a^{12}+\frac{1055}{29}a^{11}-\frac{1576}{29}a^{10}+\frac{2076}{29}a^{9}-\frac{2408}{29}a^{8}+\frac{2493}{29}a^{7}-\frac{2361}{29}a^{6}+\frac{1962}{29}a^{5}-\frac{1439}{29}a^{4}+\frac{925}{29}a^{3}-\frac{502}{29}a^{2}+\frac{218}{29}a-\frac{46}{29}$, $\frac{15}{29}a^{15}-\frac{90}{29}a^{14}+\frac{315}{29}a^{13}-\frac{736}{29}a^{12}+\frac{1355}{29}a^{11}-\frac{2057}{29}a^{10}+\frac{2740}{29}a^{9}-\frac{3184}{29}a^{8}+\frac{3341}{29}a^{7}-\frac{3147}{29}a^{6}+\frac{2612}{29}a^{5}-\frac{1951}{29}a^{4}+\frac{1236}{29}a^{3}-\frac{642}{29}a^{2}+\frac{258}{29}a-\frac{72}{29}$, $\frac{55}{29}a^{15}-\frac{243}{29}a^{14}+\frac{633}{29}a^{13}-\frac{1036}{29}a^{12}+\frac{1382}{29}a^{11}-\frac{1723}{29}a^{10}+\frac{2004}{29}a^{9}-\frac{2211}{29}a^{8}+\frac{2226}{29}a^{7}-\frac{1969}{29}a^{6}+\frac{1612}{29}a^{5}-\frac{1286}{29}a^{4}+\frac{965}{29}a^{3}-\frac{643}{29}a^{2}+\frac{308}{29}a-\frac{61}{29}$, $\frac{39}{29}a^{15}-\frac{176}{29}a^{14}+\frac{471}{29}a^{13}-\frac{800}{29}a^{12}+\frac{1087}{29}a^{11}-\frac{1294}{29}a^{10}+\frac{1353}{29}a^{9}-\frac{1301}{29}a^{8}+\frac{1164}{29}a^{7}-\frac{851}{29}a^{6}+\frac{533}{29}a^{5}-\frac{334}{29}a^{4}+\frac{186}{29}a^{3}-\frac{138}{29}a^{2}+\frac{85}{29}a-\frac{19}{29}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 155.628338249 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 155.628338249 \cdot 1}{30\cdot\sqrt{5575888916015625}}\cr\approx \mathstrut & 0.168752150436 \end{aligned}\]
Galois group
$C_2^5:C_4$ (as 16T261):
A solvable group of order 128 |
The 26 conjugacy class representatives for $C_2^5:C_4$ |
Character table for $C_2^5:C_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-3}) \), \(\Q(\zeta_{15})^+\), \(\Q(\zeta_{5})\), \(\Q(\sqrt{-3}, \sqrt{5})\), 8.6.74671875.1, 8.2.74671875.1, \(\Q(\zeta_{15})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | 16.0.239625547119140625.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.8.0.1}{8} }^{2}$ | R | R | ${\href{/padicField/7.4.0.1}{4} }^{4}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.2.0.1}{2} }^{8}$ | ${\href{/padicField/31.2.0.1}{2} }^{6}{,}\,{\href{/padicField/31.1.0.1}{1} }^{4}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\)
| 3.8.4.1 | $x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
3.8.4.1 | $x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
\(5\)
| 5.8.6.1 | $x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 674 x^{4} + 784 x^{3} + 776 x^{2} + 928 x + 721$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
5.8.6.1 | $x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 674 x^{4} + 784 x^{3} + 776 x^{2} + 928 x + 721$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
\(59\)
| 59.2.0.1 | $x^{2} + 58 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
59.2.0.1 | $x^{2} + 58 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
59.2.0.1 | $x^{2} + 58 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
59.2.0.1 | $x^{2} + 58 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
59.2.0.1 | $x^{2} + 58 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
59.2.0.1 | $x^{2} + 58 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
59.4.2.1 | $x^{4} + 116 x^{3} + 3486 x^{2} + 7076 x + 201725$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |