Normalized defining polynomial
\( x^{16} - 32 x^{14} + 366 x^{12} - 35236 x^{10} + 388601 x^{8} - 4143076 x^{6} + 647985536 x^{4} - 4660210752 x^{2} + 16429086976 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5569165027023164184679061585237737681=41^{14}\cdot 59^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $197.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{5} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} + \frac{1}{8} a^{3}$, $\frac{1}{16} a^{7} - \frac{1}{8} a^{5} + \frac{1}{16} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{32} a^{8} - \frac{1}{16} a^{6} - \frac{1}{8} a^{5} + \frac{1}{32} a^{4} - \frac{1}{8} a^{3} + \frac{1}{4} a$, $\frac{1}{32} a^{9} + \frac{1}{32} a^{5} - \frac{1}{16} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{64} a^{10} - \frac{1}{64} a^{9} - \frac{1}{32} a^{7} + \frac{1}{64} a^{6} + \frac{3}{64} a^{5} + \frac{3}{32} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{64} a^{11} - \frac{1}{64} a^{9} - \frac{1}{64} a^{7} + \frac{1}{64} a^{5} - \frac{1}{8} a^{4} + \frac{1}{8} a^{2}$, $\frac{1}{7552} a^{12} - \frac{37}{7552} a^{10} - \frac{1}{64} a^{9} - \frac{1}{7552} a^{8} - \frac{1}{32} a^{7} - \frac{411}{7552} a^{6} + \frac{3}{64} a^{5} - \frac{5}{472} a^{4} + \frac{9}{472} a^{2} - \frac{1}{2} a + \frac{35}{118}$, $\frac{1}{15104} a^{13} - \frac{1}{15104} a^{12} + \frac{81}{15104} a^{11} - \frac{81}{15104} a^{10} + \frac{235}{15104} a^{9} - \frac{235}{15104} a^{8} + \frac{179}{15104} a^{7} - \frac{179}{15104} a^{6} + \frac{113}{944} a^{5} - \frac{113}{944} a^{4} + \frac{17}{236} a^{3} - \frac{17}{236} a^{2} - \frac{83}{236} a + \frac{83}{236}$, $\frac{1}{7436417299903328237551616} a^{14} - \frac{75037307179038072667}{1859104324975832059387904} a^{12} - \frac{22978596577143509842625}{3718208649951664118775808} a^{10} + \frac{25787158431613438209021}{1859104324975832059387904} a^{8} - \frac{41854824717838043676535}{7436417299903328237551616} a^{6} - \frac{1}{8} a^{5} - \frac{25090128531281533286505}{464776081243958014846976} a^{4} - \frac{1}{8} a^{3} - \frac{4068155315342351858831}{116194020310989503711744} a^{2} + \frac{1}{4} a - \frac{34373603031644493642557}{116194020310989503711744}$, $\frac{1}{238292555958102250044103983104} a^{15} - \frac{1}{14872834599806656475103232} a^{14} - \frac{825003346760835451077019}{59573138989525562511025995776} a^{13} - \frac{171136464666278672485}{3718208649951664118775808} a^{12} + \frac{196329652955140708124805311}{119146277979051125022051991552} a^{11} - \frac{16901554461797802871999}{7436417299903328237551616} a^{10} + \frac{685814465201168394231944253}{59573138989525562511025995776} a^{9} - \frac{25540984659768121463869}{3718208649951664118775808} a^{8} + \frac{3418932728498089964330069385}{238292555958102250044103983104} a^{7} - \frac{599181677167366760699273}{14872834599806656475103232} a^{6} - \frac{594518255492257584853441321}{14893284747381390627756498944} a^{5} - \frac{71656163803927947558231}{929552162487916029693952} a^{4} - \frac{170463157689255397464438799}{3723321186845347656939124736} a^{3} - \frac{12671661170139186811505}{232388040621979007423488} a^{2} + \frac{1417539567056651969658498499}{3723321186845347656939124736} a - \frac{90725026699850678723}{232388040621979007423488}$
Class group and class number
$C_{12}\times C_{12}\times C_{12}$, which has order $1728$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1833256639.05 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T36):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $41$ | 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| $59$ | 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |