Normalized defining polynomial
\( x^{16} - 2 x^{15} + 56 x^{14} - 36 x^{13} + 1298 x^{12} + 246 x^{11} + 17477 x^{10} + 11672 x^{9} + 149104 x^{8} + 117458 x^{7} + 784597 x^{6} + 588454 x^{5} + 2445840 x^{4} + 1448666 x^{3} + 3937755 x^{2} + 2216914 x + 1884046 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(55574059317587781018003767296=2^{16}\cdot 43^{2}\cdot 2777^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $62.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 43, 2777$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{11} a^{14} + \frac{2}{11} a^{13} - \frac{5}{11} a^{12} + \frac{4}{11} a^{11} - \frac{2}{11} a^{10} - \frac{5}{11} a^{9} - \frac{5}{11} a^{8} - \frac{4}{11} a^{7} - \frac{2}{11} a^{6} + \frac{4}{11} a^{5} - \frac{3}{11} a^{3} - \frac{3}{11} a - \frac{4}{11}$, $\frac{1}{250468395109687473590177975800480331450110907} a^{15} - \frac{8495645645364056843373667432327966050528164}{250468395109687473590177975800480331450110907} a^{14} + \frac{122116233396235897947128828066094560217031330}{250468395109687473590177975800480331450110907} a^{13} - \frac{112671092932896201590235544623117058518314581}{250468395109687473590177975800480331450110907} a^{12} - \frac{86771883042766678270481988923810167469893416}{250468395109687473590177975800480331450110907} a^{11} + \frac{58867119595766483663068347529508055203215349}{250468395109687473590177975800480331450110907} a^{10} + \frac{111643410134983764876711067126899130201947022}{250468395109687473590177975800480331450110907} a^{9} - \frac{74805570249931659190978395073895465413674771}{250468395109687473590177975800480331450110907} a^{8} - \frac{34814485952557375984031807922368839524238200}{250468395109687473590177975800480331450110907} a^{7} + \frac{88334366621824877332372267128795695423164845}{250468395109687473590177975800480331450110907} a^{6} + \frac{118453321880547225869056164308184951712668742}{250468395109687473590177975800480331450110907} a^{5} + \frac{92836012936447955343032203333337551419387117}{250468395109687473590177975800480331450110907} a^{4} - \frac{79492913433438094836660828852059113178405146}{250468395109687473590177975800480331450110907} a^{3} + \frac{15559724150913457157229267433915502838615609}{250468395109687473590177975800480331450110907} a^{2} - \frac{85449870339985417608743215136203453353862952}{250468395109687473590177975800480331450110907} a + \frac{21690399098579532830114160185507265011532321}{250468395109687473590177975800480331450110907}$
Class group and class number
$C_{4}\times C_{2936}$, which has order $11744$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11805.8290435 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6144 |
| The 60 conjugacy class representatives for t16n1683 are not computed |
| Character table for t16n1683 is not computed |
Intermediate fields
| 4.4.2777.1, 8.8.1326417388.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.12.12.11 | $x^{12} - 6 x^{10} - 73 x^{8} + 140 x^{6} + 79 x^{4} - 6 x^{2} + 57$ | $2$ | $6$ | $12$ | $A_4 \times C_2$ | $[2, 2]^{6}$ | |
| $43$ | 43.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 43.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 43.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 43.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 2777 | Data not computed | ||||||