Normalized defining polynomial
\( x^{16} - 2 x^{15} + 63 x^{14} - 98 x^{13} + 1293 x^{12} - 2424 x^{11} + 14718 x^{10} - 27452 x^{9} + 111742 x^{8} - 178046 x^{7} + 541767 x^{6} - 754052 x^{5} + 1837140 x^{4} - 1943072 x^{3} + 3767542 x^{2} - 2328330 x + 4049131 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(55574059317587781018003767296=2^{16}\cdot 43^{2}\cdot 2777^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $62.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 43, 2777$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{193} a^{14} + \frac{34}{193} a^{13} - \frac{80}{193} a^{12} - \frac{48}{193} a^{11} + \frac{73}{193} a^{10} + \frac{7}{193} a^{9} - \frac{94}{193} a^{8} - \frac{68}{193} a^{7} + \frac{16}{193} a^{6} + \frac{20}{193} a^{5} + \frac{94}{193} a^{4} - \frac{25}{193} a^{3} + \frac{78}{193} a^{2} - \frac{21}{193} a - \frac{85}{193}$, $\frac{1}{2503846507021458819541291373305385486957907257} a^{15} - \frac{4700274562734127424330387141919559824930758}{2503846507021458819541291373305385486957907257} a^{14} + \frac{731668750029466611283096769044247907559004475}{2503846507021458819541291373305385486957907257} a^{13} + \frac{974860149017891413586559831561567384054087691}{2503846507021458819541291373305385486957907257} a^{12} - \frac{85374407426219647388676322273228180634240505}{2503846507021458819541291373305385486957907257} a^{11} + \frac{417794051221967647582777764207746925453029068}{2503846507021458819541291373305385486957907257} a^{10} - \frac{503370240857889402136973553712760679308642565}{2503846507021458819541291373305385486957907257} a^{9} + \frac{761175342834682924858085994301196684922369718}{2503846507021458819541291373305385486957907257} a^{8} + \frac{1246472127273522134904421496088278848549315888}{2503846507021458819541291373305385486957907257} a^{7} + \frac{505077020015040135119320311287440355909498397}{2503846507021458819541291373305385486957907257} a^{6} + \frac{646074579966363487639770909239635726887642994}{2503846507021458819541291373305385486957907257} a^{5} + \frac{585351935227341852725156135482959736463870091}{2503846507021458819541291373305385486957907257} a^{4} + \frac{1244568475330333945881839720726038091688069469}{2503846507021458819541291373305385486957907257} a^{3} - \frac{448970698903643197954456083770852108909073869}{2503846507021458819541291373305385486957907257} a^{2} - \frac{271407330274390132227917333308079244662065042}{2503846507021458819541291373305385486957907257} a + \frac{327824025732756492954121101569459159888918}{2503846507021458819541291373305385486957907257}$
Class group and class number
$C_{4}\times C_{972}$, which has order $3888$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11805.8290435 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6144 |
| The 60 conjugacy class representatives for t16n1683 are not computed |
| Character table for t16n1683 is not computed |
Intermediate fields
| 4.4.2777.1, 8.8.1326417388.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ |
| 2.12.12.11 | $x^{12} - 6 x^{10} - 73 x^{8} + 140 x^{6} + 79 x^{4} - 6 x^{2} + 57$ | $2$ | $6$ | $12$ | $A_4 \times C_2$ | $[2, 2]^{6}$ | |
| $43$ | 43.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 43.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 43.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 43.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 2777 | Data not computed | ||||||