Normalized defining polynomial
\( x^{16} + 8 x^{14} - 30 x^{13} + 93 x^{12} - 200 x^{11} + 481 x^{10} - 2270 x^{9} + 1870 x^{8} - 5230 x^{7} + 8291 x^{6} - 19470 x^{5} + 14203 x^{4} + 57540 x^{3} + 150223 x^{2} + 197210 x + 121301 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5538336400000000000000=2^{16}\cdot 5^{14}\cdot 61^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{10} a^{12} - \frac{1}{5} a^{11} + \frac{3}{10} a^{10} + \frac{2}{5} a^{9} + \frac{3}{10} a^{8} - \frac{2}{5} a^{7} - \frac{3}{10} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a^{4} - \frac{2}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5} a + \frac{1}{10}$, $\frac{1}{10} a^{13} - \frac{1}{10} a^{11} + \frac{1}{10} a^{9} + \frac{1}{5} a^{8} - \frac{1}{10} a^{7} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{4} - \frac{1}{5} a^{2} - \frac{1}{2} a + \frac{1}{5}$, $\frac{1}{410} a^{14} - \frac{1}{205} a^{13} + \frac{11}{410} a^{12} - \frac{66}{205} a^{11} - \frac{23}{410} a^{10} - \frac{11}{205} a^{9} - \frac{149}{410} a^{8} + \frac{91}{205} a^{7} - \frac{13}{205} a^{6} - \frac{56}{205} a^{5} - \frac{14}{205} a^{4} + \frac{5}{41} a^{3} - \frac{11}{82} a^{2} + \frac{18}{205} a - \frac{91}{205}$, $\frac{1}{49627595437985249361279846804412490} a^{15} + \frac{20936783146217650047998775140897}{49627595437985249361279846804412490} a^{14} + \frac{479152834681508156413219726255077}{24813797718992624680639923402206245} a^{13} + \frac{1236762021687075865598767367105257}{24813797718992624680639923402206245} a^{12} + \frac{1363703683235883664253127330524927}{24813797718992624680639923402206245} a^{11} - \frac{11822122513433919041516487353335824}{24813797718992624680639923402206245} a^{10} + \frac{7417209346525622305631492059869031}{24813797718992624680639923402206245} a^{9} + \frac{12333703289103267793486677985329002}{24813797718992624680639923402206245} a^{8} - \frac{9908496678150283306530027257371817}{49627595437985249361279846804412490} a^{7} + \frac{21641233268218726676257027171444841}{49627595437985249361279846804412490} a^{6} - \frac{9089464497499313143921275398152351}{24813797718992624680639923402206245} a^{5} + \frac{6971869693635560910164531762780053}{24813797718992624680639923402206245} a^{4} - \frac{334604791545026646124815183267713}{49627595437985249361279846804412490} a^{3} - \frac{686101405172829696858882524469157}{9925519087597049872255969360882498} a^{2} - \frac{11802473806736625755416391918567049}{49627595437985249361279846804412490} a - \frac{52462246531355403368275242439109}{491362331069160884765146998063490}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{407940625124688565301660195839}{24813797718992624680639923402206245} a^{15} - \frac{943499185966773065055292973707}{49627595437985249361279846804412490} a^{14} + \frac{731324009257466521401579349609}{4962759543798524936127984680441249} a^{13} - \frac{30902795104869378747795460376147}{49627595437985249361279846804412490} a^{12} + \frac{52770759876692960729397158657804}{24813797718992624680639923402206245} a^{11} - \frac{257144143395315264286171577526013}{49627595437985249361279846804412490} a^{10} + \frac{59890210577946528212111742852324}{4962759543798524936127984680441249} a^{9} - \frac{434468918573082114308417412886007}{9925519087597049872255969360882498} a^{8} + \frac{346694227145244211220305896201820}{4962759543798524936127984680441249} a^{7} - \frac{615089323914179334938171394530938}{4962759543798524936127984680441249} a^{6} + \frac{4720772993194651702826041441714034}{24813797718992624680639923402206245} a^{5} - \frac{9671133724592264262617622052030011}{24813797718992624680639923402206245} a^{4} + \frac{2429074325281164626299876802365677}{4962759543798524936127984680441249} a^{3} + \frac{28755824678414324518876912239946793}{49627595437985249361279846804412490} a^{2} + \frac{20807618799094578626758600831501264}{24813797718992624680639923402206245} a + \frac{173600839000613458088422632018281}{245681165534580442382573499031745} \) (order $20$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 48078.5125638 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4:C_2^2.C_2$ (as 16T317):
| A solvable group of order 128 |
| The 23 conjugacy class representatives for $C_2^4:C_2^2.C_2$ |
| Character table for $C_2^4:C_2^2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{-1}) \), \(\Q(\zeta_{5})\), \(\Q(\zeta_{20})^+\), \(\Q(i, \sqrt{5})\), \(\Q(\zeta_{20})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $5$ | 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| 61 | Data not computed | ||||||