Normalized defining polynomial
\( x^{16} + 1192 x^{14} + 533420 x^{12} + 115089984 x^{10} + 12963208302 x^{8} + 759505090400 x^{6} + 21418969775000 x^{4} + 246442200500000 x^{2} + 770131876562500 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(552198156105754424298997471653759249446600704=2^{62}\cdot 149^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $625.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 149$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4768=2^{5}\cdot 149\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4768}(1,·)$, $\chi_{4768}(3085,·)$, $\chi_{4768}(4365,·)$, $\chi_{4768}(2385,·)$, $\chi_{4768}(789,·)$, $\chi_{4768}(2681,·)$, $\chi_{4768}(3173,·)$, $\chi_{4768}(3873,·)$, $\chi_{4768}(1893,·)$, $\chi_{4768}(1489,·)$, $\chi_{4768}(297,·)$, $\chi_{4768}(1981,·)$, $\chi_{4768}(4277,·)$, $\chi_{4768}(1193,·)$, $\chi_{4768}(3577,·)$, $\chi_{4768}(701,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{149} a^{4}$, $\frac{1}{149} a^{5}$, $\frac{1}{149} a^{6}$, $\frac{1}{149} a^{7}$, $\frac{1}{310814} a^{8} + \frac{2}{1043} a^{6} - \frac{2}{1043} a^{4} + \frac{2}{7} a^{2} + \frac{2}{7}$, $\frac{1}{1554070} a^{9} + \frac{9}{5215} a^{7} + \frac{1}{1043} a^{5} + \frac{2}{35} a^{3} + \frac{16}{35} a$, $\frac{1}{7770350} a^{10} - \frac{4}{3885175} a^{8} + \frac{3}{5215} a^{6} + \frac{8}{26075} a^{4} + \frac{26}{175} a^{2} - \frac{1}{7}$, $\frac{1}{38851750} a^{11} - \frac{4}{19425875} a^{9} + \frac{73}{26075} a^{7} - \frac{167}{130375} a^{5} - \frac{324}{875} a^{3} - \frac{3}{7} a$, $\frac{1}{28944553750} a^{12} + \frac{4}{97129375} a^{10} - \frac{17}{19425875} a^{8} - \frac{1158}{651875} a^{6} + \frac{701}{651875} a^{4} - \frac{83}{175} a^{2} - \frac{2}{7}$, $\frac{1}{144722768750} a^{13} + \frac{4}{485646875} a^{11} - \frac{17}{97129375} a^{9} + \frac{3217}{3259375} a^{7} - \frac{8049}{3259375} a^{5} - \frac{83}{875} a^{3} - \frac{16}{35} a$, $\frac{1}{283044309490546504906250} a^{14} - \frac{2416811150729}{141522154745273252453125} a^{12} + \frac{414646344851}{379925247638317456250} a^{10} - \frac{712208444721667}{949813119095793640625} a^{8} - \frac{1723713390595599}{6374584691918078125} a^{6} - \frac{779762252002948}{254983387676723125} a^{4} - \frac{5850821137614}{13690383230965} a^{2} - \frac{104906867277}{391153806599}$, $\frac{1}{1415221547452732524531250} a^{15} - \frac{2416811150729}{707610773726366262265625} a^{13} + \frac{414646344851}{1899626238191587281250} a^{11} - \frac{712208444721667}{4749065595478968203125} a^{9} - \frac{44506160987361224}{31872923459590390625} a^{7} + \frac{2642833555738302}{1274916938383615625} a^{5} - \frac{19541204368579}{68451916154825} a^{3} - \frac{104906867277}{1955769032995} a$
Class group and class number
$C_{13}\times C_{146914690}$, which has order $1909890970$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4026951.331137613 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 149 | Data not computed | ||||||