Normalized defining polynomial
\( x^{16} - 5 x^{15} + 8 x^{14} + 15 x^{13} - 115 x^{12} + 265 x^{11} - 72 x^{10} - 675 x^{9} + 649 x^{8} - 5400 x^{7} - 4608 x^{6} + 135680 x^{5} - 471040 x^{4} + 491520 x^{3} + 2097152 x^{2} - 10485760 x + 16777216 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5508664624112838398681640625=5^{12}\cdot 41^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $54.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{8} a^{9} + \frac{3}{8} a^{8} - \frac{1}{8} a^{6} - \frac{3}{8} a^{5} + \frac{1}{8} a^{4} - \frac{3}{8} a^{2} + \frac{1}{8} a$, $\frac{1}{64} a^{10} + \frac{3}{64} a^{9} - \frac{1}{2} a^{8} + \frac{15}{64} a^{7} + \frac{5}{64} a^{6} - \frac{15}{64} a^{5} + \frac{29}{64} a^{3} - \frac{15}{64} a^{2} - \frac{1}{4} a$, $\frac{1}{512} a^{11} + \frac{3}{512} a^{10} - \frac{1}{16} a^{9} + \frac{79}{512} a^{8} + \frac{5}{512} a^{7} - \frac{143}{512} a^{6} - \frac{227}{512} a^{4} - \frac{143}{512} a^{3} - \frac{13}{32} a^{2} - \frac{3}{8} a$, $\frac{1}{749568} a^{12} - \frac{325}{749568} a^{11} + \frac{65}{93696} a^{10} + \frac{5061}{249856} a^{9} + \frac{51917}{749568} a^{8} + \frac{80643}{249856} a^{7} + \frac{44455}{93696} a^{6} - \frac{122785}{249856} a^{5} + \frac{335945}{749568} a^{4} - \frac{10193}{31232} a^{3} + \frac{4183}{11712} a^{2} + \frac{107}{366} a + \frac{64}{183}$, $\frac{1}{5996544} a^{13} + \frac{1}{1998848} a^{12} - \frac{7}{62464} a^{11} + \frac{33487}{5996544} a^{10} + \frac{253445}{5996544} a^{9} - \frac{636943}{5996544} a^{8} + \frac{9763}{46848} a^{7} + \frac{2171549}{5996544} a^{6} - \frac{2521231}{5996544} a^{5} + \frac{35435}{374784} a^{4} + \frac{12595}{93696} a^{3} - \frac{1783}{5856} a^{2} + \frac{593}{1464} a + \frac{62}{183}$, $\frac{1}{619754815488} a^{14} - \frac{10813}{619754815488} a^{13} + \frac{1901}{6455779328} a^{12} + \frac{402802063}{619754815488} a^{11} - \frac{3868454843}{619754815488} a^{10} + \frac{4145729403}{206584938496} a^{9} - \frac{242985}{1613944832} a^{8} - \frac{26740817505}{206584938496} a^{7} + \frac{73585399995}{206584938496} a^{6} - \frac{3933552503}{12911558656} a^{5} + \frac{732153683}{2420917248} a^{4} + \frac{259790419}{605229312} a^{3} + \frac{1326391}{50435776} a^{2} + \frac{958112}{2364177} a - \frac{387562}{2364177}$, $\frac{1}{3773067316690944} a^{15} + \frac{457}{1257689105563648} a^{14} - \frac{7763819}{471633414586368} a^{13} + \frac{2497350031}{3773067316690944} a^{12} + \frac{173419421741}{3773067316690944} a^{11} + \frac{17034055995241}{3773067316690944} a^{10} + \frac{2579606445201}{157211138195456} a^{9} + \frac{263061693751455}{1257689105563648} a^{8} + \frac{383353030636067}{1257689105563648} a^{7} + \frac{20262538228019}{157211138195456} a^{6} - \frac{7840802562071}{29477088411648} a^{5} + \frac{159616906335}{2456424034304} a^{4} + \frac{84078092683}{921159012864} a^{3} + \frac{221573905}{471905232} a^{2} + \frac{2929772009}{7196554788} a + \frac{475095490}{1799138697}$
Class group and class number
$C_{12}\times C_{12}$, which has order $144$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{134577}{97351892992} a^{15} - \frac{7904184027}{1257689105563648} a^{14} - \frac{36963795}{78605569097728} a^{13} + \frac{69012584489}{1257689105563648} a^{12} - \frac{108884227053}{1257689105563648} a^{11} - \frac{32702352345}{1257689105563648} a^{10} + \frac{15047558289}{78605569097728} a^{9} - \frac{304117384245}{1257689105563648} a^{8} + \frac{646052179815}{1257689105563648} a^{7} - \frac{235378160517}{39302784548864} a^{6} - \frac{141416131185}{9825696137216} a^{5} + \frac{267269429889}{1228212017152} a^{4} - \frac{8751657687}{19190812768} a^{3} - \frac{34639084635}{38381625536} a^{2} + \frac{4762928019}{1199425798} a - \frac{2200355094}{599712899} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 478806.025823 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $41$ | 41.4.3.2 | $x^{4} - 1476$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 41.4.3.2 | $x^{4} - 1476$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.3.2 | $x^{4} - 1476$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.3.2 | $x^{4} - 1476$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |