Normalized defining polynomial
\( x^{16} - 95 x^{14} + 3851 x^{12} - 88710 x^{10} + 1286011 x^{8} - 11934110 x^{6} + 69284846 x^{4} - 237776760 x^{2} + 395254161 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5508664624112838398681640625=5^{12}\cdot 41^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $54.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{6} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} + \frac{1}{6} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{11} - \frac{1}{2} a^{4} + \frac{1}{6} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2946} a^{12} + \frac{29}{982} a^{10} + \frac{229}{982} a^{8} + \frac{142}{491} a^{6} + \frac{554}{1473} a^{4} - \frac{1}{2} a^{3} - \frac{327}{982} a^{2} - \frac{35}{982}$, $\frac{1}{138462} a^{13} + \frac{1762}{69231} a^{11} - \frac{753}{46154} a^{9} - \frac{8205}{23077} a^{7} + \frac{3500}{69231} a^{5} - \frac{14975}{69231} a^{3} - \frac{1}{2} a^{2} + \frac{15677}{46154} a - \frac{1}{2}$, $\frac{1}{202532060325554464662} a^{14} - \frac{11314902561097805}{202532060325554464662} a^{12} + \frac{10406618124445862993}{202532060325554464662} a^{10} + \frac{1887595230102650797}{67510686775184821554} a^{8} - \frac{1}{2} a^{7} - \frac{14627763792420253991}{202532060325554464662} a^{6} - \frac{1}{2} a^{5} - \frac{23843498725062876400}{101266030162777232331} a^{4} + \frac{88173534414176293613}{202532060325554464662} a^{2} - \frac{5001967119295389}{10187216957172902}$, $\frac{1}{28557020505903179517342} a^{15} - \frac{40031528049991276}{14278510252951589758671} a^{13} - \frac{2257182478202128632055}{28557020505903179517342} a^{11} - \frac{520185882744188117921}{9519006835301059839114} a^{9} + \frac{5482398048567584132822}{14278510252951589758671} a^{7} - \frac{1}{2} a^{6} - \frac{14199838144197245346485}{28557020505903179517342} a^{5} + \frac{1134520431276002142953}{28557020505903179517342} a^{3} - \frac{1}{2} a^{2} - \frac{610778287890328423}{1436397590961379182} a - \frac{1}{2}$
Class group and class number
$C_{2}\times C_{2}\times C_{10}$, which has order $40$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 478806.025823 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $41$ | 41.8.6.1 | $x^{8} - 9881 x^{4} + 34857216$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 41.8.6.1 | $x^{8} - 9881 x^{4} + 34857216$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |