Normalized defining polynomial
\( x^{16} - x^{15} + 16 x^{14} - 49 x^{13} + 311 x^{12} + 1323 x^{11} + 4288 x^{10} + 9763 x^{9} + 31987 x^{8} + 42566 x^{7} + 49432 x^{6} + 52344 x^{5} + 50896 x^{4} + 14752 x^{3} + 4224 x^{2} + 1152 x + 256 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5508664624112838398681640625=5^{12}\cdot 41^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $54.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(205=5\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{205}(1,·)$, $\chi_{205}(132,·)$, $\chi_{205}(9,·)$, $\chi_{205}(204,·)$, $\chi_{205}(81,·)$, $\chi_{205}(83,·)$, $\chi_{205}(196,·)$, $\chi_{205}(91,·)$, $\chi_{205}(32,·)$, $\chi_{205}(163,·)$, $\chi_{205}(42,·)$, $\chi_{205}(173,·)$, $\chi_{205}(114,·)$, $\chi_{205}(73,·)$, $\chi_{205}(122,·)$, $\chi_{205}(124,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{8} - \frac{1}{8} a^{7} + \frac{3}{8} a^{6} + \frac{3}{8} a^{4} + \frac{3}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{16} a^{12} - \frac{1}{16} a^{11} - \frac{1}{16} a^{9} + \frac{7}{16} a^{8} - \frac{5}{16} a^{7} + \frac{3}{16} a^{5} + \frac{3}{16} a^{4} + \frac{3}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{1147079529632} a^{13} + \frac{19624763883}{1147079529632} a^{12} + \frac{2189779431}{286769882408} a^{11} - \frac{1157541905}{1147079529632} a^{10} - \frac{220701442125}{1147079529632} a^{9} - \frac{153046022777}{1147079529632} a^{8} + \frac{70215279045}{286769882408} a^{7} + \frac{327365762451}{1147079529632} a^{6} - \frac{264593908833}{1147079529632} a^{5} - \frac{246301918375}{573539764816} a^{4} + \frac{28857959545}{71692470602} a^{3} + \frac{28219660059}{71692470602} a^{2} + \frac{1492527788}{35846235301} a + \frac{5358071884}{35846235301}$, $\frac{1}{2294159059264} a^{14} - \frac{1}{2294159059264} a^{13} - \frac{4443514209}{573539764816} a^{12} - \frac{58704482725}{2294159059264} a^{11} - \frac{207906369793}{2294159059264} a^{10} + \frac{517132408767}{2294159059264} a^{9} - \frac{88996108673}{573539764816} a^{8} - \frac{70436960049}{2294159059264} a^{7} - \frac{200584001381}{2294159059264} a^{6} + \frac{368900941189}{1147079529632} a^{5} - \frac{232715150319}{573539764816} a^{4} - \frac{91557549155}{286769882408} a^{3} + \frac{10630080236}{35846235301} a^{2} + \frac{11696116470}{35846235301} a + \frac{8810902681}{35846235301}$, $\frac{1}{4588318118528} a^{15} - \frac{1}{4588318118528} a^{14} - \frac{73543177649}{4588318118528} a^{12} + \frac{265022776807}{4588318118528} a^{11} - \frac{498310184741}{4588318118528} a^{10} - \frac{33907754477}{143384941204} a^{9} + \frac{2157957281315}{4588318118528} a^{8} - \frac{2002735921181}{4588318118528} a^{7} - \frac{852008057157}{2294159059264} a^{6} + \frac{34512399687}{573539764816} a^{5} - \frac{225337092383}{573539764816} a^{4} - \frac{36848537919}{286769882408} a^{3} + \frac{54245597751}{143384941204} a^{2} + \frac{23403854937}{71692470602} a + \frac{2615041441}{35846235301}$
Class group and class number
$C_{4}\times C_{20}$, which has order $80$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{420676101}{286769882408} a^{15} + \frac{514159679}{286769882408} a^{14} - \frac{6823618665}{286769882408} a^{13} + \frac{22108866197}{286769882408} a^{12} - \frac{135410962733}{286769882408} a^{11} - \frac{527481088865}{286769882408} a^{10} - \frac{840090173697}{143384941204} a^{9} - \frac{1852196748749}{143384941204} a^{8} - \frac{12543486270673}{286769882408} a^{7} - \frac{1864529963210}{35846235301} a^{6} - \frac{4203909760871}{71692470602} a^{5} - \frac{2174848700381}{35846235301} a^{4} - \frac{16689412472737}{286769882408} a^{3} - \frac{180984207008}{35846235301} a^{2} - \frac{49733263496}{35846235301} a - \frac{11218029360}{35846235301} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1050930.24893 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4^2$ |
| Character table for $C_4^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $41$ | 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |