Normalized defining polynomial
\( x^{16} - 6 x^{15} + 81 x^{14} - 424 x^{13} + 2493 x^{12} - 9146 x^{11} + 40339 x^{10} - 111182 x^{9} + 226478 x^{8} + 508734 x^{7} - 2988049 x^{6} + 7062268 x^{5} + 7304373 x^{4} - 39342142 x^{3} + 86324549 x^{2} - 2254022 x + 130734151 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(55005256933563283079156494140625=5^{14}\cdot 37^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $96.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{10} - \frac{1}{4}$, $\frac{1}{16} a^{11} + \frac{1}{16} a^{10} + \frac{1}{8} a^{9} + \frac{1}{8} a^{8} - \frac{1}{4} a^{6} - \frac{1}{8} a^{4} - \frac{1}{8} a^{3} - \frac{1}{2} a^{2} + \frac{3}{16} a + \frac{7}{16}$, $\frac{1}{32} a^{12} + \frac{1}{32} a^{10} + \frac{3}{16} a^{8} - \frac{1}{8} a^{7} + \frac{1}{8} a^{6} + \frac{3}{16} a^{5} - \frac{1}{2} a^{4} + \frac{1}{16} a^{3} - \frac{5}{32} a^{2} + \frac{1}{8} a + \frac{1}{32}$, $\frac{1}{128} a^{13} + \frac{1}{128} a^{12} - \frac{3}{128} a^{11} + \frac{13}{128} a^{10} - \frac{9}{64} a^{9} - \frac{3}{64} a^{8} + \frac{1}{8} a^{7} - \frac{11}{64} a^{6} + \frac{3}{64} a^{5} - \frac{27}{64} a^{4} - \frac{27}{128} a^{3} + \frac{15}{128} a^{2} + \frac{41}{128} a + \frac{37}{128}$, $\frac{1}{72704} a^{14} - \frac{51}{18176} a^{13} + \frac{1}{284} a^{12} + \frac{305}{18176} a^{11} + \frac{7461}{72704} a^{10} + \frac{1345}{18176} a^{9} - \frac{8337}{36352} a^{8} + \frac{4557}{36352} a^{7} + \frac{3577}{18176} a^{6} + \frac{439}{18176} a^{5} + \frac{17795}{72704} a^{4} - \frac{6377}{36352} a^{3} + \frac{16555}{36352} a^{2} + \frac{385}{1136} a - \frac{30113}{72704}$, $\frac{1}{74487835063303340724966175978897350410518728876032} a^{15} + \frac{12492540128266695998318878440698862012533107}{74487835063303340724966175978897350410518728876032} a^{14} - \frac{20299697460146803293603902549736670250444705765}{18621958765825835181241543994724337602629682219008} a^{13} + \frac{289088830411621430010046258786798735318116699289}{18621958765825835181241543994724337602629682219008} a^{12} + \frac{1807244744542866963440839470523983609894364245761}{74487835063303340724966175978897350410518728876032} a^{11} - \frac{2925315120994168956727391273465015341738304166465}{74487835063303340724966175978897350410518728876032} a^{10} + \frac{4916167528887737846302041823516456837428302731341}{37243917531651670362483087989448675205259364438016} a^{9} - \frac{4177148956736533687370194794830306595495603916577}{18621958765825835181241543994724337602629682219008} a^{8} + \frac{5208280111316232366711116998275575720025079913829}{37243917531651670362483087989448675205259364438016} a^{7} - \frac{1014992708881202352502673111722352464193494382457}{9310979382912917590620771997362168801314841109504} a^{6} - \frac{1648958600134735410838397348605018752702436939417}{74487835063303340724966175978897350410518728876032} a^{5} + \frac{11193733332840830624455389632872263294892987245739}{74487835063303340724966175978897350410518728876032} a^{4} - \frac{250971138349520387943169267806116493421891139783}{9310979382912917590620771997362168801314841109504} a^{3} + \frac{10667180793515371854410628498009897561556551657189}{37243917531651670362483087989448675205259364438016} a^{2} - \frac{18655735446766748002570656728777607621214736303553}{74487835063303340724966175978897350410518728876032} a + \frac{46350888899973638281103186844238678085271413443}{151706385057644278462252904234006823646677655552}$
Class group and class number
$C_{13}\times C_{26}$, which has order $338$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2969685.17473 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_8: C_2$ |
| Character table for $C_8: C_2$ |
Intermediate fields
| \(\Q(\sqrt{37}) \), \(\Q(\sqrt{185}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{37})\), 4.4.6331625.1, 4.4.6331625.2, 8.8.40089475140625.1, 8.0.7416552901015625.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 37 | Data not computed | ||||||