Normalized defining polynomial
\( x^{16} - 8 x^{15} + 132 x^{14} - 784 x^{13} + 6874 x^{12} - 31416 x^{11} + 183344 x^{10} - 646472 x^{9} + 2702073 x^{8} - 7244720 x^{7} + 23236220 x^{6} - 46753560 x^{5} + 136884272 x^{4} - 203161896 x^{3} + 502723444 x^{2} - 407897504 x + 702991681 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(55002674780385421400473600000000=2^{48}\cdot 5^{8}\cdot 29^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $96.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2320=2^{4}\cdot 5\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2320}(1,·)$, $\chi_{2320}(579,·)$, $\chi_{2320}(581,·)$, $\chi_{2320}(1159,·)$, $\chi_{2320}(1161,·)$, $\chi_{2320}(1739,·)$, $\chi_{2320}(1741,·)$, $\chi_{2320}(2319,·)$, $\chi_{2320}(349,·)$, $\chi_{2320}(929,·)$, $\chi_{2320}(1509,·)$, $\chi_{2320}(231,·)$, $\chi_{2320}(2089,·)$, $\chi_{2320}(811,·)$, $\chi_{2320}(1391,·)$, $\chi_{2320}(1971,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{15} a^{8} - \frac{4}{15} a^{7} - \frac{2}{15} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{5} a^{3} - \frac{2}{15} a - \frac{4}{15}$, $\frac{1}{15} a^{9} - \frac{1}{5} a^{7} - \frac{1}{5} a^{6} - \frac{1}{3} a^{5} + \frac{2}{15} a^{4} + \frac{1}{5} a^{3} - \frac{2}{15} a^{2} + \frac{1}{5} a - \frac{1}{15}$, $\frac{1}{1905} a^{10} - \frac{1}{381} a^{9} - \frac{38}{1905} a^{8} + \frac{182}{1905} a^{7} - \frac{2}{381} a^{6} - \frac{628}{1905} a^{5} + \frac{358}{1905} a^{4} + \frac{553}{1905} a^{3} + \frac{328}{1905} a^{2} - \frac{247}{635} a - \frac{187}{381}$, $\frac{1}{1905} a^{11} - \frac{21}{635} a^{9} - \frac{8}{1905} a^{8} + \frac{60}{127} a^{7} - \frac{226}{635} a^{6} - \frac{877}{1905} a^{5} + \frac{146}{635} a^{4} - \frac{239}{635} a^{3} + \frac{899}{1905} a^{2} - \frac{166}{381} a - \frac{173}{381}$, $\frac{1}{295275} a^{12} - \frac{2}{98425} a^{11} - \frac{37}{295275} a^{10} + \frac{16}{19685} a^{9} + \frac{1172}{98425} a^{8} - \frac{1038}{19685} a^{7} - \frac{145151}{295275} a^{6} - \frac{33176}{98425} a^{5} + \frac{145663}{295275} a^{4} + \frac{52726}{295275} a^{3} + \frac{18548}{98425} a^{2} + \frac{834}{98425} a - \frac{4394}{9525}$, $\frac{1}{295275} a^{13} - \frac{73}{295275} a^{11} + \frac{6}{98425} a^{10} + \frac{1652}{98425} a^{9} + \frac{1842}{98425} a^{8} + \frac{56704}{295275} a^{7} - \frac{28203}{98425} a^{6} + \frac{27809}{59055} a^{5} + \frac{40879}{295275} a^{4} + \frac{33}{127} a^{3} + \frac{13697}{98425} a^{2} - \frac{121202}{295275} a + \frac{737}{3175}$, $\frac{1}{66868846319028075} a^{14} - \frac{1}{9552692331289725} a^{13} + \frac{106529078641}{66868846319028075} a^{12} - \frac{127834894351}{13373769263805615} a^{11} - \frac{1332772000183}{66868846319028075} a^{10} + \frac{12522959325169}{66868846319028075} a^{9} - \frac{494968365248519}{66868846319028075} a^{8} + \frac{1897704785854043}{66868846319028075} a^{7} + \frac{1517049633679294}{66868846319028075} a^{6} - \frac{3711162767724106}{22289615439676025} a^{5} - \frac{10407865336516727}{22289615439676025} a^{4} + \frac{1087972471818513}{4457923087935205} a^{3} + \frac{12499512519681167}{66868846319028075} a^{2} + \frac{10607541119546953}{66868846319028075} a + \frac{81992034969676}{308151365525475}$, $\frac{1}{421662172938144106587675} a^{15} + \frac{3152897}{421662172938144106587675} a^{14} - \frac{100324110794019652}{421662172938144106587675} a^{13} + \frac{39138098653103959}{60237453276877729512525} a^{12} + \frac{2010369607043491639}{60237453276877729512525} a^{11} + \frac{2895009247280165104}{20079151092292576504175} a^{10} - \frac{42658303660178053109}{60237453276877729512525} a^{9} - \frac{9465014809347768233144}{421662172938144106587675} a^{8} - \frac{66061895430069012980498}{140554057646048035529225} a^{7} - \frac{16830287027029331539718}{60237453276877729512525} a^{6} - \frac{1978811413377270580969}{4015830218458515300835} a^{5} - \frac{1449723999763428710761}{60237453276877729512525} a^{4} + \frac{10615600593738103519798}{60237453276877729512525} a^{3} - \frac{17445827301105788256104}{60237453276877729512525} a^{2} - \frac{210544018287472652682523}{421662172938144106587675} a - \frac{837019104455011049084}{1943143654092829984275}$
Class group and class number
$C_{5}\times C_{10}\times C_{4080}$, which has order $204000$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12198.951274811623 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $29$ | 29.8.4.1 | $x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 29.8.4.1 | $x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |